
Scaling Type-Based Points-to Analysis with Saturation

CHRISTIAN WIMMER, Oracle Labs, USA
CODRUT STANCU, Oracle Labs, Switzerland
DAVID KOZAK, Brno University of Technology, Czechia and Oracle Labs, Czechia

THOMAS WÜRTHINGER, Oracle Labs, Switzerland

Designing a whole-program static analysis requires trade-offs between precision and scalability. While a

context-insensitive points-to analysis is often considered a good compromise, it still has non-linear complexity

that leads to scalability problems when analyzing large applications. On the other hand, rapid type analysis

scales well but lacks precision. We use saturation in a context-insensitive type-based points-to analysis to

make it as scalable as a rapid type analysis, while preserving most of the precision of the points-to analysis.

With saturation, the points-to analysis only propagates small points-to sets for variables. If a variable can

have more values than a certain threshold, the variable and all its usages are considered saturated and no

longer analyzed.

Our implementation in the points-to analysis of GraalVM Native Image, a closed-world approach to build

standalone binaries for Java applications, shows that saturation allows GraalVM Native Image to analyze large

Java applications with hundreds of thousands of methods in less than two minutes.
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1 INTRODUCTION

Whole-program points-to analysis [20, 46] has many diverse usages, for example, call graph
construction [1, 42], security analysis [4, 33], auto-parallelization [43], bug analysis [14, 31], heap
allocation analysis [51], and program debugging and understanding [30]. Unfortunately, it often
scales poorly for large applications. While a lot of effort has been put into improving the scalability
of context-sensitive analysis [6, 35, 55] to make it scale similarly to a context-insensitive analysis,
it is often overlooked that even a standard context-insensitive points-to analysis has scalability
problems because its complexity is quadratic in practice [50]. With increasing application size, there
are both more variables E and more heap abstractions =. Any analysis with a quadratic complexity
O(E ∗ =) has scalability problems for a sufficiently large application.
When points-to analysis is too slow, rapid type analysis [5, 53] is often used as an alternative.

In contrast to a points-to analysis, it does not compute which values a certain variable can have,
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Fig. 1. Analysis time for the benchmarks presented in Section 7. The trend lines illustrate the quadratic
vs. linear growth of the analysis time without vs. with saturation.

but only computes which methods are reachable. This can be done with linear time and memory
complexity with regard to the size of the application, but leads to a significant loss in precision.

In this paper, we focus on a type-based points-to analysis, which uses types as heap abstractions
instead of allocation sites. To improve the scalability of such a points-to analysis, we propose to use
saturation to prune the inter-procedural pointer assignment graph data structure while the analysis
is running. Saturation removes variables for which the analysis already found more values than an
arbitrary but fixed threshold. The intuition is simple: if a particular result of the analysis cannot be
used to improve any metric later on, it is not worth spending time to prove that result. Saturation
replaces the precise points-to state for a variable with declared-type information, and removes the
variable and all its usages from the pointer assignment graph. We show that a context-insensitive
points-to analysis that uses saturation is nearly as fast as a rapid type analysis, but still nearly as
precise as a points-to analysis without saturation. We also show that the actual saturation threshold
value does not impact the analysis time much, i.e., a large range of thresholds lead to a precise yet
scalable analysis.
Scalability issues of a context-insensitive points-to analysis can go unnoticed because they

are only visible in large applications, i.e., many standard benchmarks are too small to observe
the problems. Our evaluation shows, for example, that a benchmark with about 100 thousand
reachable methods can be analyzed in about 30 seconds without saturation, and saturation reduces
the analysis time only by about 25%. But for a benchmark with 300 thousand reachable methods,
the analysis without saturation takes more than 9 minutes, while with saturation it takes only
100 seconds—a more than 5x difference and a linear growth in analysis time.

Figure 1 illustrates this growth of analysis time for the benchmarks evaluated later on in Section 7.
We compare only three configurations here: a context-insensitive type-based points-to analysis
without saturation, the same analysis with saturation (saturation threshold 1024), and a rapid type
analysis. The x-axis shows the number of reachable methods for the 7 benchmarks. The number is
not the same for the configurations: rapid type analysis has a noticeable loss in precision, therefore
all benchmarks are to the right of the corresponding points-to analysis numbers. The y-axis shows
the analysis time. The trend lines interpolate between the individual benchmark results.

Our implementation, which is based on the Native Image component of GraalVM [38], is written
in Java, analyzes Java bytecode, and Java is used for all examples in this paper. However, our
approach is not limited to Java or languages that compile to Java bytecode. It can be applied to all
managed languages that are amenable to points-to analysis, such as C# or other languages of the
.NET framework.
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In summary, this paper contributes the following:

• We argue that a type-based analysis, in contrast to the more commonly used allocation site
abstraction, does not significantly reduce the precision of a sound analysis for Java.
• We propose to use saturation to limit the size of states that are propagated by a type-based
points-to analysis.
• We argue that saturation allows a type-based context-insensitive points-to analysis to scale
as well as a rapid type analysis, but preserves most of the useful precision.
• Saturation is used in the production-quality points-to analysis of GraalVM Native Image. We
evaluate it with various saturation thresholds, and also compare it with a rapid type analysis
as well as a context-sensitive analysis to show linear scalability and high precision.

2 SYSTEM OVERVIEW

Points-to analysis is always a trade-off between time spent to do the analysis, the precision of
the analysis results, and soundness. A context-insensitive points-to analysis is usually chosen
when analysis time is relevant, but to increase precision, many different forms of context-sensitive
analyses have been proposed [37, 48, 55]. In our experimental evaluation with Java application
frameworks, context-sensitivity however does not show enough benefits to justify the analysis
time. Therefore, our contributions are targeted in the opposite direction: we want to improve the
scalability of a context-insensitive sound analysis as much as possible, so that the analysis time
only grows linearly with the application size.

To improve the scalability, we propose to use a type-based abstraction and further optimize that
abstraction using saturation. Saturation removes nodes from the pointer assignment graph that
exceed a certain threshold of elements in the points-to set of a variable. This allows the points-to
analysis to scale like a rapid type analysis, which only identifies all reachable code but does not
track individual variables. But in contrast to a rapid type analysis, variables with a small points-to
set still have precise information. These are the variables that matter when using analysis results
for e.g., de-virtualization of method calls or removing unnecessary type checks.

2.1 Points-to Analysis

This section introduces our points-to analysis. It can be configured to be context-insensitive or
context-sensitive, with several different strategies to define the context. It is flow-insensitive for
fields but flow-sensitive for local variables. It starts with a set of root methods and then identifies and
processes all transitively reachable methods until a fixed point is reached. It analyzes Java bytecode
up to the latest Java version 21, and is sound with regards to all details of the Java specification as
well as real-world usages of Java. It is imperative and written in Java.

Each reachable method is parsed from Java bytecode into a pointer assignment graph. For each
instruction that operates on an object, a node in the pointer assignment graph is created. In addition
to these nodes representing instructions, there are nodes representing actual and formal parameters
as well as return values of methods. The nodes are connected via directed use edges.
Each node maintains a points-to set containing all values that can reach the variable. Nodes

representing allocation instructions and nodes representing object constants act as sources that
produce values, which are then propagated along the use edges. Once a value is added to a points-to
set, it is never removed. Thus, the size of all sets can only grow.
In addition to type checks, Java applications also contain a high number of null checks: For

memory safety, every variable needs to be checked to not be null before accessing memory or
using it as the receiver of a method call. Our points-to analysis therefore also tracks nullness
information in the points-to set. If a set contains a dedicated null-marker value, the value can be
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null and an explicit null check is necessary in the code. If the marker is not in the set, the variable
is known to be non-null and null checks on the variable can be removed.
The pointer assignment graphs of methods are connected into a single inter-procedural graph

covering the whole application. For that, nodes producing the actual arguments of method calls are
connected with formal parameters nodes of the target methods, and return nodes from the target
methods are connected back into the invocation nodes in the callers. The input edges of invocation
nodes are thus not used for regular value propagation but rather for steering the interconnection
of sources of arguments with the formal-parameter nodes (and of the appropriate return node with
the invocation node).
For static methods, this linkage happens when the pointer assignment graph of the caller is

created. For virtual method calls, the linkage happens dynamically during the analysis: Every time
a new type is added into the points-to set of a receiver of a method call, it is used to resolve the
concrete method to be linked.
The results of the points-to analysis are useful not only to identify reachable elements but also

for many code optimizations. They can be used to remove unnecessary casts, null checks, and dead
branches; simplify conditions that are always true or false; exclude fields that are never accessed;
and to optimize virtual calls with a limited number of receiver types. Knowing the set of receivers
and their types allows de-virtualization of method calls with only one possible target method, as
well as polymorphic method inlining when there are a few target methods only.

2.2 Type-based Analysis

The kind of elements contained in the points-to sets depends on the configuration of the analysis.
In the most precise case of a context-sensitive points-to analysis, the elements are allocation sites of
objects qualified by the context how that allocation site was reached. In many context-insensitive
points-to analysis implementations, elements are also the allocation sites of objects but without a
context [9, 18, 22].
In this section, we argue that using a type abstraction does not reduce precision significantly

in a sound points-to analysis for Java bytecode, as long as the main goal of the analysis is to find
the reachable elements and to provide information for code optimizations. In the type abstraction,
a points-to set is the set of types that the variable can get assigned. Several aspects of Java, both
details of the Java specification and real-world usages of Java, limit the benefits of allocation site
information. We present some examples here:
In Java bytecode, the allocation of an object with the newinstance bytecode is immediately

followed by an invocation of the constructor. Each constructor must invoke a constructor from the
superclass, until the root constructor of java.lang.Object is reached. In a context-insensitive
analysis, the allocation site allows to distinguish the places of the newinstance bytecode. However,
due to the lack of context, the constructor is already shared between all allocation sites of a
particular type, so all field stores in the constructor coalesce. Similarly, direct field accesses using
the getfield and putfield bytecode can be attributed to a particular allocation site, but many
field accesses in Java are wrapped in get/set accessor methods shared between all allocation sites.

The Java Native Interface (JNI) allows calls between Java and C code. It is possible, and commonly
done in the JDK class library, to allocate objects as well as access arrays and fields in C code, and
pass the results to Java code. Any Java method that might be invoked from C via JNI can only
use declared-type information for its parameters (unless the Java points-to analysis is co-designed
with a C points-to analysis). To maintain soundness, a points-to analysis with an allocation-site
abstraction must treat such opaque values conservatively and assume that they can represent any
object of the declared type, i.e., use a points-to set with all allocation sites of the declared type and
its subtypes.
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The Java class Unsafe allows the allocation of objects without static knowledge of the type. For
such an allocation site, the points-to analysis cannot track precise information, but can only rely
on the types that the allocated object is eventually cast to. In addition, Unsafe allows field accesses
by offset, without static knowledge of which field is accessed.
While at first it seems that objects affected by the imprecision of JNI and Unsafe are rare, the

design of the Java type system for arrays leads to the rapid spread of such objects to nearly all places
of an application: values are stored into object arrays, and objects arrays are stored in instance fields
(for example in collections like ArrayList) and other object arrays. Without context information,
many usages see all allocation sites of a particular type.
It would be possible to increase precision by not handling certain details of JNI, Unsafe, or

other parts of the Java specification, but this would make the analysis unsound. While an analysis
with a small amount of unsoundness is still useful for domains like security analysis or program
understanding [32], it is out of scope for this paper to explore.

2.3 Saturation of the Pointer Assignment Graph

Points-to analysis computes the set of objects that each variable in an application might point to.
The smaller the set is, the more useful the information is for later optimization stages. Smaller
sets are also cheap to propagate around. The most frequent operations on points-to sets, union
and filtering, are usually proportional to the set size. Larger sets on the other hand are expensive
to compute and provide little useful information for later optimization stages. We therefore set a
maximum size, and when a points-to set exceeds that size we call it saturated.

For such saturated pointer assignment nodes, the points-to analysis no longer tracks exact type
information. Instead, it falls back to declared-type information, i.e., a saturated value can have any
reachable subtype of its declared type. This is the same information that a rapid type analysis is
using. When new types are found as reachable, the subtype set grows without any further analysis
effort. Once a pointer assignment node gets saturated, we remove it from the pointer assignment
graph. Saturation of one node also triggers saturation of all its usages. This greatly reduces the size
of the inter-procedural graph while the analysis is running, reducing not only analysis time but
also the memory footprint.
Without saturation, the size of the pointer assignment graph has quadratic complexity: in a

program with E variables and = types, the complexity of the memory size to store the type states
is O(E ∗ =). While in reality only few variables have the full size of = types, that number of
variables still grows when the size of the application is growing, keeping the complexity quadratic.
With an arbitrary but fixed saturation threshold of 100, the maximum size of the points-to sets is
O(E ∗ 100) = O(E), i.e., the complexity is linear.

2.4 Saturation of Call Sites

When the receiver of a virtual method invocation gets saturated, the pointer assignment graph node
for the invocation is replaced with a canonical saturated invocation node for the invoked method.
When new subtypes of the receiver type are registered as reachable, only the single saturated flow
needs to observe the new subtype and possibly link a new target method. Saturation of call sites is
crucial to achieve linear time complexity. Without saturation, the analysis time for handling such
invokes has quadratic time complexity: with 8 invocations and = classes that override a method,
each of the 8 invocations could need to be linked to = callees. This leads to the quadratic complexity
of O(8 ∗ =), both for the computational effort of points-to set propagation and the memory to store
the information. With saturation, the complexity of updating the single saturated invoke is reduced
to O(1 ∗=) = O(=). With an arbitrary but fixed saturation threshold of 100, updating the remaining
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non-saturated invokes has a maximum complexity of O(8 ∗ 100) = O(8). Combining both parts,
saturation reduces the complexity from O(8 ∗ =) to O(8 + =), i.e., from quadratic to linear.

Saturation of call sites does not reduce the precision of the analysis further compared to saturation
of the pointer assignment graph. It simply avoids redundant linking of the same callees to different
invokes that in the end all get the maximal callee set.
The canonical example are methods declared in java.lang.Object like toString: when an

application grows, both new call sites of toString and new implementations of toString are
added, i.e., more invocations can reach more implementation methods. With saturation, all invo-
cations of toString with a saturated receiver are replaced with the single saturated invocation
of Object.toString, and only that single pointer assignment graph node needs to link new
implementations of toString.
When an invocation gets saturated, the return value of that invocation is not automatically

saturated. Since all implementations of Object.toString return a String (which cannot be
subclassed in Java), the points-to set of the value returned by the saturated invocation only contains
the single type String. In addition to the four methods in Object that are frequently invoked and
overridden (toString, equals, hashCode, and clone), saturation removes also analysis bottlenecks
in commonly used interface methods like Comparable.compareTo, Function.apply, or the Java
collections framework.

2.5 Impact of Saturation

The main configuration parameter of saturation is the saturation threshold, i.e., the maximum
size that a points-to set can reach before it is considered saturated. While it would be possible to
have heuristics that avoid a single fixed value, our evaluation shows that there is a wide range of
threshold values that lead to similar results. For the discussion here it is sufficient to focus on a
single saturation threshold for the whole pointer assignment graph. Low saturation thresholds are
not overly useful in practice.

A saturation threshold of 0 effectively degrades the points-to analysis to a rapid type analysis. As
soon as a single value can reach a variable, the value is no longer tracked but instead the variable is
saturated. There is no benefit of using such a saturated points-to analysis configuration instead of
a rapid type analysis.
A saturation threshold of 1 only tracks variables that have a single exact value assigned. Such

variables have the highest optimization potential: all type checks on such variables can be decided
statically based on their single exact type, and all virtual calls can be de-virtualized because with
only one receiver type there can also be only one invoked method. As confirmed by our evaluation
later on, the change from threshold 0 to 1 is the biggest individual increase in analysis precision.

Further small increases of the threshold to 2, and then up to about 16, lead to substantial increases
in precision: For such a low number of precisely known types, it is still likely that type checks
can be decided statically. And even if a small number of types reach the receiver type of a call, all
these types can resolve to the same invoked method, i.e., the method call can be de-virtualized. A
more precise analysis also means that fewer methods are found as reachable, and fewer reachable
methods mean less work to do for the analysis. A saturation threshold of 0 or 1 is not fastest analysis
configuration. Instead, the fastest analysis uses a threshold that is low enough so that points-to set
propagation is not a bottleneck yet, but high enough to achieve a good analysis precision.
Larger increases of the threshold into the hundreds and thousands of types shows only minor

increases in precision: If a variable can have a hundred or a thousand types, it is already unlikely that
a type check can be decided or that there is only a single implementation method for a polymorphic
call (if there is only a single implementation method overall in the whole application, then the call
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static void main() {

Object o1 = sourceOne();

... = o1.toString();

Object o2 = sourceTwo();

... = o2.toString();

}

static Object sourceOne() {

return new A();

}

class A {

String toString() {...}

}

static Object sourceTwo() {

Object[] array = ...

int index = ...

return array[index];

}

Fig. 2. Java source code for the example.

is de-virtualized even when the call site is saturated). The analysis time is increasing because there
are now operations on sets with hundreds or thousands of elements.
If the saturation threshold approaches the total number of types reachable in the application,

saturation becomes ineffective and the analysis converges into a traditional points-to analysis
without saturation.

In addition to the list of types, saturation also loses “non-null” information, i.e., a null check of a
saturated value is treated as if it can contain null. Since pointer assignments that get saturated
are removed from the pointer assignment graph, the non-null information can also no longer be
propagated around. Therefore, the number of null checks that can be proven by the analysis is
affected similarly to the number of type checks.

3 EXAMPLE

We use the Java source code shown in Figure 2 to illustrate saturation and its benefits. The method
main invokes toString on two different values, returned by the helper methods sourceOne and
sourceTwo. Assume that sourceOne returns always a new instance of class A, while sourceTwo
returns a value loaded from an Object[] array. Both invocations of toString are virtual.

Figure 3 shows the inter-procedural pointer assignment graph of our example. For space reasons,
we show the pointer assignment graph before and after the analysis in the same figure: when
the pointer assignment graph is created, all nodes shown in the figure are created, including the
“removed by saturation” nodes shown with dashed lines. Saturation removes those nodes from
the graph while the points-to analysis is running, as explained later. When creating the pointer
assignment graph for a method, all instructions that operate on object values lead to pointer
assignment nodes. In Java, many instructions also lead to additional operations required to ensure
memory safety. In our example, both virtual invokes are preceded by a receiver null check.

Nodes in the pointer assignment graph perform a “union” operation: the points-to set of a node
is the union of all states referenced by incoming edges. In addition, some nodes like Filter also
perform a filtering operation, e.g., the points-to set of a Filter: nonNull is always non-null even if a
predecessor is null; and the points-to set of a FormalReceiver is implicitly filtered with the declaring
type of the method. Filter nodes are not created for a branch instruction, but for its successor blocks.
In our example, the null check before the first invoke leads to a Filter: alwaysNull that tracks the
state of variable o1 when it is null; and to a Filter: nonNull that tracks the state when the variable
o1 is not null. This approach mimics the flow of values during actual program execution.

A method invocation is translated into multiple nodes: the Invoke node that links to the callees;
an ActualParam node for each method parameter that propagates points-to sets into the callees;
and one ActualReturn node that accumulates the values returned by the callees.

In order to link callers with callees, InvokeVirtual nodes observe the receiver type, i.e., the points-
to set of their ActualParam: this. The target method is resolved for each type in that points-to set,
yielding the list of callee methods. In our example, the first invoke node InvokeVirtual: toString in
method main observes that type A is added to the points-to set of its ActualParam: this node. The
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main sourceOne

sourceTwo

[A]

[A]

[String]

...
...

[A]

[A]

A.toString

Object.toString

[A]

...

...

[String]

...

...

[String]

[String]

[all types]

...

[A]

Node of the pointer
assignment graph

Points-to set after analysis

Edge of the pointer
assignment graph

Node removed by saturation

Edge removed by saturation

Method boundary

Resolved target method
of invocation
Edge inserted by method
resolution

ActualReturn

Filter: alwaysNull
Filter: nonNull

ActualParam: this
InvokeVirtual: toString

ActualReturn

InvokeStatic: sourceTwo
ActualReturn

Filter: alwaysNull Filter: nonNull

ActualParam: this
InvokeVirtual: toString

ActualReturn

InvokeStatic: sourceOne
NewInstance: A

FormalReturn

ArrayLoad

FormalReturn

FormalReceiver

FormalReturn

FormalReceiver
FormalReturn

ActualParam: this
SaturatedInvoke: toString

ActualReturn

[A]

[empty]

Fig. 3. Inter-procedural pointer assignment graph of the example.

target method Object.toString is resolved to the callee A.toString. Since this is the first time
that A.toString is seen as a callee, it is marked as “reachable”, its bytecode is parsed and translated
into a pointer assignment graph. Then the pointer assignment graph is linked by connecting the
ActualParam: this of the caller with the FormalReceiver of the callee and the FormalReturn of the
callee with the ActualReturn of the caller. These flow graph edges propagate the points-to set into
and out of the callee.

The first half of our example invokes the method sourceOne and then invokes toString on the
result. In the pointer assignment graph, the return value of method sourceOne is a NewInstance
node, whose points-to set contains only the type A. This points-to set is propagated via the formal
and actual return nodes to the Filter: alwaysNull and Filter: nonNull nodes of the null check. Since
the incoming points-to set is already known to be non-null, the points-to set of Filter: alwaysNull
is empty and the Filter: nonNull does not need to filter anything. The analysis has proven that the
null check is unnecessary and can be removed. The InvokeVirtual of method Object.toString

is resolved to the single callee A.toString. The analysis has proven that the virtual invoke can
be de-virtualized. The points-to analysis proves valuable facts for this half of our example. It also
reaches the fixed point quickly because all involved points-to sets are small.
The second half of our example invokes the method sourceTwo and then invokes toString

on the result. The return value of method sourceTwo is a load from an Object[] array. Tracking
the exact points-to set of an array load is often futile: it is going to be close to the set of all
reachable types. Saturation of pointer assignments ensures that the points-to analysis does not
spend time attempting to optimize such values. First, the ArrayLoad node gets saturated. This
triggers saturation of the formal return, the actual return, the non-null filter, and finally the
InvokeVirtual node. Saturated nodes are removed from the pointer assignment graph, reducing the
graph size while the analysis is running.
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NEW ; : G ← new ) CALL ; : G ← 00 .5 (01, ..., 0=) LOAD ; : G ← A .5

NULL ; : G ← null RETURN ; : return A4C STORE ; : A .5 ← G

MERGE ; : G ←<4A64 (G1, ..., G=)

FILTER ; : G ← filtercond (~), cond ∈ {), !), =D;;, !=D;;}

Fig. 4. Base language processed by the analysis.

if G is ) then

⟨body_1⟩

else

⟨body_2⟩

=⇒

if G is ) then

G1 ← filter T (G)

⟨body_1 using G1⟩

else

G2 ← filter !T (G)

⟨body_2 using G2⟩

Fig. 5. FILTER example.

Saturation of the virtual invocation replaces the InvokeVirtual node with the single canonical
saturated node for Object.toString. Only this saturated invoke node needs to resolve all im-
plementations of Object.toString, which includes Object.toString itself, A.toString, and all
other toString implementations in the application. The FormalReceiver of Object.toString is
saturated too because class Object has many subclasses. But the FormalReceiver of A.toString is
not saturated, because in our example class A does not have any subclasses so the filtering done
by the FormalReceiver node leads to a small points-to set. The points-to analysis cannot prove
valuable facts for this half of our example. But it reaches the fixed point quickly because saturation
prunes the pointer assignment graph early.
In summary, our example is analyzed as follows:

• Variable o1 has the exact type A and can never be null. The virtual invoke o1.toString is
de-virtualized, and its preceding implicit null check is removed.
• Saturation reduces analysis time by pruning the variable o2 from the pointer assignment
graph and replacing the invocation o2.toString with the saturated invocation.

4 FORMAL DESCRIPTION

This section provides the formal description of our analysis. The formalism is inspired by the
works of He et al. [18]. The analysis takes as input a base language in the form of a control flow
graph with instructions for object instantiation, object access, and method invocation. Arrays are
modelled as objects with one field representing all indices merged. The base language is in static
single assignment (SSA) form, i.e., all variables have one static definition [10]. Furthermore, we
assume (for simplicity and without loss of generality) that all variable names are unique and every
method has one return statement. Figure 4 enumerates the instructions of the base language. Each
instruction is identified by a label l.
The control flow graph together with the SSA form enable flow-sensitivity for local variables.

We utilize conditions to locally improve the information about a variable x used by a type check or
null check. Other conditions do not improve the precision of the analysis and are therefore not in
the formalism. As shown in Figure 5, we introduce pseudo-instructions FILTER at the beginning of
the if and else blocks, which create new local variables whose points-to set are filtered versions
according to the condition, and replace all usages of x dominated by the branch with the new
variables. A FILTER instruction can take four different forms (type check, null check, and their
negations) depending on the condition and the side of the branch.
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; : G ← new ), > = HeapAbs(l, T )

> ⇝ G, ∀) ′ ∈ SuperTypes(T ) : > ⇝ ) ′
[New]

; : G ← null

nul l ⇝ G
[Null]

; : G ← A .5 , > ⇝∗ A

>.5 ⇝ G
[Load]

; : A .5 ← G, > ⇝∗ A

G ⇝ >.5
[Store]

; : G ←<4A64 (G1, ..., G=)

∀8 ∈ [1, =] : G8 ⇝ G
[Merge]

; : G ← filtercond (~), fn = filterNode(cond)

~ ⇝ fn⇝ G
[Filter]

; : G ← 00 .5 (01, ..., 0=), > ⇝∗ 00, < = '4B>;E4 (>, 5 )

∀8 ∈ [0, =] : 08 ⇝ ?<
8
, retm ⇝ G

[Call, Return]

Fig. 6. Inference rules for the base language.

Let V, H, T,M, F, L, and Q be the domains for representing sets of variables, heap abstractions
(including a special null marker), types, methods, field names, instructions (identified by their
labels), and filter nodes, respectively. The pointer assignment graph (PAG) is a directed graph whose
nodes are from the domain N = V ∪ (H × F) ∪ T ∪ Q. The set of PAG edges is initially empty.

During the analysis, edges are added to the PAG and points-to sets %)(8= , and %)(>DC , formally
represented as functionsN→ P(H), are computed.We separate points-to sets into input and output
parts for each node, in order to introduce saturation into the formalism (the actual implementation
only stores the output sets). In addition to variables and fields, types act as nodes in our PAG too
and have points-to sets: The points-to set of a type t contains all generated heap abstractions of t
as well as all subtypes of t. These points-to sets are used for saturation.
The following auxiliary functions are used:

• HeapAbs: L × T→ H returns the heap abstraction of the given object.
• SuperTypes: T→ P(T) returns all supertypes, including the type itself.
• TypeOf : N→ T returns the static type of a variable or field represented by the PAG node.
• Resolve: H×M→ M performs method resolution for the given heap abstraction and method.

The analysis can be parameterized by the HeapAbs function. For a standard context-insensitive
points-to analysis, it is defined as HeapAbs(;,) ) = ; : ) where an object is represented by its
allocation site and type. For the type-based points-to analysis, it is HeapAbs(;,) ) = ) where an
object is represented by its type only. Since there are no individual objects in the type-based analysis,
the instance fields are represented as fields of the declared type and all arrays are aliased into one.

The inference rules shown in Figure 6 present how PAG edges are added based on the processed
instructions in so-far discovered reachable methods. The notation G ⇝ ~ indicates a PAG edge
from G to ~. The notation > ⇝∗ C indicates a path in PAG from > to C that respects the filter nodes,
i.e., > has to pass the conditions of all filter nodes along the path.

Rule New states that for each allocation a heap abstraction > is generated, and a PAG edge is created
from > to the target variable G . To maintain information about all generated heap abstractions
per type, a PAG edge is also created from > to all supertypes of ) , including ) itself. Rules Null,
Load, Store, and Merge (for phi functions of the SSA form) directly express the semantics of their
corresponding instructions. Rule Filter creates a filter node fn between G and ~ that filters objects
based on its condition. Rule Call, which also handles Return, describes the linking of callers with
callees in method invocations. Actual parameters 08 are connected with formal parameters ?8
(including the receiver) and the return value is connected with the target variable G in the caller.
The function Resolve marks the returned method as reachable, i.e., method resolution increases the
set of reachable methods.
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> ∈ H

PTSin (o) = {>}
[Init]

=1 ⇝ =2

PTSout (n1) ⊆ PTSin (n2)
[Propagate]

= ∈ N, = ∉ (0CDA0C43

{> | > ∈ PTSin (n) ∧ check(o, n)} ⊆ PTSout (n)
[UpdateNotSaturated]

= ∈ N, |PTSout (n) | > #

= ∈ Saturated
[Saturation] 2ℎ42: (>, =) =

{

2>=3 (>) if = is filterNode(cond)

CAD4 otherwise

= ∈ N, = ∈ (0CDA0C43, ) = TypeOf (n)

PTSout (n) = PTSout (T )
[UpdateSaturated]

Fig. 7. Inference rules for updating points-to sets.

The rules shown in Figure 7 describe how points-to sets are computed. Rule Init states that
the points-to set of each heap abstraction > (including null) is constant and contain only > . Rule
Propagate ensures that the output PTSout of any PAG node is propagated to the input PTSin of all its
usages. During the computation, the Saturated set (initially empty) containing saturated PAG nodes
is gradually expanded. The existence of the Saturated set is only for the formalism, while the actual
implementation does the opposite: the implementation maintains only non-saturated nodes and
removes the saturated ones. Rule UpdateNotSaturated describes the propagation from PTSin to
PTSout for non-saturated nodes. It states that all heap abstractions from the input that pass the check
are in the output. The check is an auxiliary function that returns true for non-filter nodes and uses
the cond predicate for the filter nodes. Rule Saturation defines when a node becomes saturated. To
disable saturation, it is sufficient to set N = ∞. Finally, rule UpdateSaturated defines the update
of saturated nodes. The points-to sets of these nodes no longer maintain precise information and
instead just reuse the value from the node of their declared type.

5 CORRECTNESS

In this section, we sketch a correctness proof for our points-to analysis with saturation. The starting
point is a baseline points-to analysis without saturation, i.e., we assume that such an analysis is
sound and always terminates.
For soundness, all points-to sets that are not saturated are unchanged when comparing to the

baseline. Since saturation of one points-to set leads to saturation of all usages of that points-to
set, any non-saturated points-to set is built and updated exactly as in the baseline analysis. If a
points-to set is saturated, the precise points-to set is replaced with declared-type information, i.e.,
the set of the declared type and all its subtypes. Since Java bytecode is a type-safe language, no
points-to analysis can ever add a type to a precise points-to set that is not assignable to the declared
type of the variable. This means that the declared-type information is always a superset of the
precise type information. As long as the precise type information is sound, a superset of the precise
information is sound too.
For termination, a context-insensitive points-to analysis is guaranteed to terminate because

points-to sets only grow, i.e., in the worst case the sets of all variables grow to contain all sources
of values and then the analysis terminates. Saturation can only reduce the number of variables that
need a points-to set, because the application itself is not growing. The maximum size of a points-to
set is only decreased by saturation: instead of the total number of types in the application, the
maximum size is now the minimum of the (arbitrary but fixed) saturation threshold and the number
of types in the application. In summary, saturation does not increase the number of variables and
does not increase the maximum size of a points-to set, so termination is still guaranteed.
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6 IMPLEMENTATION DETAILS

This section presents implementation details that are more tied to our implementation in GraalVM
Native Image than the general concepts presented in the previous sections.

6.1 Data Structures

The operations performed on large points-to sets are often the bottleneck of a points-to analysis. To
make union and filtering operations on points-to sets efficient, we represent them as dense bit sets
where each type has a unique id that is used as the index into the bit set. This makes operations on
large points-to sets fast, which occur frequently when saturation is not used.

When saturation is enabled, a sparse bit-set representation could provide benefits. But profiling
showed that the points-to operations are not a bottleneck anymore with saturation, so a more
optimized representation of small points-to sets was not necessary yet.

6.2 Heap Snapsho�ing

The input of GraalVM Native Image is Java bytecode, compiled from any language that compiles
to Java bytecode such as Java, Scala, or Kotlin. The application, its libraries, the JDK, and VM
components are all analyzed by the points-to analysis and then AOT compiled. The result is a
native executable for a specific operating system and architecture.

Java bytecode is difficult to analyze when looking at code only. Data objects are used pervasively
for things that are primitive values in other languages. For example, enum values are not primitive
integer values but objects. Design patterns like factories as well as dependency injection approaches
that decouple interfaces from their implementations lead to a static state that is initialized once and
then remains constant throughout the whole run of an application. A points-to analysis that only
looks at code therefore needs to be overly conservative: it needs to be ready for any implementation
class to be injected at run time, instead of the one fixed implementation class that is configured for
a particular application.
To overcome this limitation, we use application initialization at build time [57]: the application

is initialized as much as possible already before running the points-to analysis. The amount of
initialization is up to the user, but ideally all configuration and dependency injection is already
done at build time. This leads to Java objects being allocated at build time. Heap snapshotting builds
the object graph of such objects, which are stored in the data section of the application and form
the initial Java heap when the application starts.

Heap snapshotting is done as part of the points-to analysis: whenever the analysis marks a field
as reachable, heap snapshotting processes the field and follows its references. As part of heap
snapshotting, new types can be marked as reachable, which also makes new methods reachable.
These methods are then processed by the points-to analysis. Therefore, the fixed point of the
points-to analysis not only requires a fixed point in the points-to set propagation, but also requires
a fixed point of heap snapshotting.

6.3 Exception Handling

In Java, every method can throw exceptions, either implicitly as part of, e.g., field and array accesses,
or explicitly using throw. So-called checked exceptions need to be listed in the method signature,
while subclasses of RuntimeException and Error do not need to be listed. It would be possible to
track exception types the same way as method return values in the points-to analysis, i.e., propagate
the possible exception types from callees to callers in a points-to set. In our experiments, that did
not pay off: nearly every method can throw a long list of implicit exceptions. Also the checked
exceptions cannot be trusted, because the requirement that they are listed only applies to the
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Java programming language, not the Java bytecode specification. Instead of propagating separate
points-to sets for exceptions that a method can throw across the call graph, we treat the exception
object of every exception handler as a node in the pointer assignment graph that can have any
subclass of java.lang.Throwable (the base class of all exceptions in the Java type system).

6.4 Handling of Reflection and JNI

The Java reflection API provides class lookup by name, as well as access of the methods, constructors,
and fields of a class. Reflection complicates points-to analysis because it is not apparent which
classes, methods, and fields are accessed [25]. A conservative analysis that assumes everything is
accessed using reflection would defeat the goals of a points-to analysis: we cannot determine on a
fine-grained level which classes, methods, and fields are used by an application if all of them are
possibly accessed via reflection. We require the developer to specify at build time which classes,
methods, and fields should be visible to reflection. Only the listed elements are then processed by
the points-to analysis. To help collecting reflection information, we provide a tool similar to [8]: a
tracing agent that records reflection usage of the application during development.
The Java Native Interface (JNI) is handled in the same way as reflection: JNI allows C code to

look up classes, methods, and fields by name and then invoke the methods or access the fields. The
developer needs to specify at build time which elements are visible to JNI.

6.5 Handling of invokedynamic

The Java bytecode invokedynamic allows the invocation of a method that is not fixed yet in the
bytecode, but computed before the first execution of the bytecode. A so-called bootstrap method is
invoked that returns a MethodHandle, i.e., a representation of the to-be-invoked method that is in
most cases similar to a reflection method reference. Initialization at build time allows us to optimize
most dynamic method invocations: When the bootstrap method can be executed at build time,
we convert the dynamic call site into a regular method call. The points-to analysis is not aware
that the call was dynamic, and analyzes it like any other call site. This handling is possible for the
most common usages of invokedynamic in Java, like lambda expressions, string concatenation,
and VarHandle usages.

If a bootstrap method does not return a constant method handle, the analysis sees an invocation
of the method handle interpreter, i.e., an interpreter that determines at run time which method
is invoked. This reduces analysis precision significantly, because the return value of the dynamic
invocation is no longer precise. But our handling is always sound and complete.

6.6 Handling of Unsafe Memory Access

The Java classes sun.misc.Unsafe and jdk.internal.misc.Unsafe allow direct memory access,
i.e., access of fields and array elements just by providing a base object and a memory offset. Even
though the usage of Unsafe is discouraged, it is widely used in real-world Java code. Similarly
to reflection, we require a manual configuration at build time, i.e., all fields that are accessed via
Unsafe need to be listed. For such fields, the precision of the points-to analysis is greatly reduced.
All such fields must be unified to the same points-to set, i.e., all values flowing into any unsafe
store affect all fields registered for Unsafe access.

7 EVALUATION

Our approach is used by the Native Image component of GraalVM, which produces standalone
binaries for Java applications that contain the application along with all its dependencies, as well as
the necessary runtime components such as the garbage collector. We evaluate with Oracle GraalVM
for JDK 21, which is based on build 21.0.1+12.1 of Java 21.
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We run all benchmarks 10 times and report the average of the runs (except for the context-
sensitive configuration, which for time reasons we run only once). The benchmarks (except for the
context-sensitive configuration) were executed on a dual-socket Intel Xeon E5-2630 v3 running at
2.40 GHz with 8 physical / 16 logical cores per socket, 128 GByte main memory, running Oracle
Linux Server release 7.3. The benchmark execution was pinned to one of the two CPUs, and
TurboBoost was disabled to avoid instability. The number of threads used by the points-to analysis
was set to 16. We use a server configuration for benchmarking because that allows us to provide
stable and reproducible numbers. However, we deliberately select an old configuration that is
similar to a current developer laptop. For the context-sensitive configuration, the analysis takes
hours instead of seconds/minutes for the larger benchmarks, so we use a variety of large modern
servers with more cores and more memory.
We use the following benchmarks for evaluation:

• Spring PetClinic [56]: A large demo application for the Spring framework.
• Micronaut MuShop Order [39]: A large demo application using the Micronaut framework.
The Order service is the largest service of MuShop.
• Quarkus Registry [41]: A large real-world application using the Quarkus framework. It is
used to host the Quarkus extension registry.
• Renaissance als: A benchmark from the Renaissance suite that runs the ALS algorithm from
the Spark ML library.
• Renaissance finagle-chirper : The largest benchmark of the Renaissance suite that does not
include the Spark library.
• columba and soot are two of the largest benchmarks used in related work. We took the
benchmarks from the artifact provided by [36]. Note that columba cannot be executed on
Java 21 because it relies on internals of the JDK that have changed in Java 9, but a manual
inspection of the static analysis results show that the list of reachable methods reasonably
reflects the classes of the application.

We use the threemost frequently usedmodern frameworks for Javaweb services in our evaluation:
Spring, Micronaut, and Quarkus. In order to not be biased towards a single framework, we selected
a large application from each framework. All applications perform different functions. Under
no circumstance can our evaluation be seen as a comparison and ranking of the frameworks
against each other. In addition, we use two of the largest benchmarks from the Renaissance suite
version 0.14.1 [40]. Reporting all benchmark results from the Renaissance suite would not bring
additional insights: all of the Renaissance benchmarks that use Spark are variations of the same
large underlying framework, and the other Renaissance benchmarks are small in terms of reachable
methods. Similarly, we are not using any benchmarks from the DaCapo or SpecJVM 2008 suites
because these benchmarks are too small in terms of reachable methods to show any scalability
issues when using a context-insensitive points-to analysis without saturation.

7.1 Precision and Analysis Time

We compare the precision and analysis time of several different static analysis configurations.
Our context-insensitive type-based (CI) points-to analysis without saturation can be seen as a
baseline: it produces reasonably precise analysis results, and can analyze medium-sized applications
usually in under one minute. However, for applications with hundreds of thousands of reachable
methods, scalability problems appear. When enabling saturation, a saturation threshold needs to
be chosen. Figure 8 evaluates the context-insensitive points-to analysis with 1024 as an example of
a large saturation threshold, and 16 as an example of a small saturation threshold. Figure 9 later on
evaluates more saturation thresholds for selected benchmarks.
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Configuration Analysis 
time

Reach. 
methods

Reach. 
types

Type 
checks

Null 
checks

Poly.
calls

Call
edges

CI without saturation 160 sec.  205 k  39 k  100 k  231 k  71 k  3,055 k  
CI with saturation (threshold 1024) 67 sec.  205 k  39 k  102 k  234 k  71 k  3,243 k  
CI with saturation (threshold 16) 62 sec.  206 k  39 k  114 k  238 k  73 k  4,047 k  
CI always saturate (threshold 0) 66 sec.  210 k  39 k  190 k  311 k  114 k  10,204 k  
rapid type analysis 49 sec.  217 k  41 k  10,468 k  
CS (2-obj 1-heap) 20 h.  205 k  39 k  99 k  230 k  70 k  2,975 k  

CI without saturation 84 sec.  164 k  29 k  72 k  159 k  50 k  3,608 k  
CI with saturation (threshold 1024) 46 sec.  164 k  29 k  73 k  161 k  50 k  3,703 k  
CI with saturation (threshold 16) 44 sec.  165 k  29 k  80 k  165 k  51 k  4,110 k  
CI always saturate (threshold 0) 46 sec.  170 k  29 k  128 k  217 k  78 k  6,778 k  
rapid type analysis 34 sec.  172 k  30 k  6,881 k  
CS (2-obj 1-heap) 5 h.  164 k  29 k  71 k  158 k  49 k  3,503 k  

CI without saturation 50 sec.  111 k  20 k  51 k  106 k  34 k  1,074 k  
CI with saturation (threshold 1024) 33 sec.  111 k  20 k  51 k  107 k  34 k  1,116 k  
CI with saturation (threshold 16) 33 sec.  111 k  20 k  55 k  109 k  35 k  1,349 k  
CI always saturate (threshold 0) 35 sec.  117 k  21 k  93 k  151 k  57 k  3,203 k  
rapid type analysis 26 sec.  119 k  22 k  3,261 k  
CS (2-obj 1-heap) 141 min.  111 k  20 k  50 k  104 k  33 k  1,010 k  

CI without saturation 564 sec.  305 k  57 k  111 k  266 k  82 k  7,396 k  
CI with saturation (threshold 1024) 100 sec.  305 k  57 k  113 k  268 k  82 k  7,547 k  
CI with saturation (threshold 16) 105 sec.  313 k  57 k  128 k  272 k  84 k  18,964 k  
CI always saturate (threshold 0) 114 sec.  324 k  58 k  186 k  349 k  120 k  31,841 k  
rapid type analysis 74 sec.  336 k  58 k  31,642 k  
CS (2-obj 1-heap) 62 h.  303 k  57 k  105 k  264 k  80 k  7,059 k  

CI without saturation 33 sec.  85 k  16 k  26 k  68 k  22 k  572 k  
CI with saturation (threshold 1024) 25 sec.  85 k  16 k  26 k  68 k  22 k  578 k  
CI with saturation (threshold 16) 26 sec.  87 k  16 k  29 k  70 k  22 k  881 k  
CI always saturate (threshold 0) 27 sec.  94 k  17 k  49 k  98 k  36 k  2,293 k  
rapid type analysis 23 sec.  96 k  17 k  2,345 k  
CS (2-obj 1-heap) 45 min.  85 k  16 k  25 k  67 k  21 k  530 k  

CI without saturation 33 sec.  96 k  15 k  39 k  126 k  25 k  627 k  
CI with saturation (threshold 1024) 26 sec.  96 k  15 k  40 k  127 k  25 k  644 k  
CI with saturation (threshold 16) 25 sec.  96 k  15 k  42 k  130 k  26 k  804 k  
CI always saturate (threshold 0) 26 sec.  101 k  16 k  66 k  174 k  49 k  1,688 k  
rapid type analysis 19 sec.  112 k  18 k  1,982 k  
CS (2-obj 1-heap) 38 min.  95 k  15 k  39 k  125 k  24 k  598 k  

CI without saturation 20 sec.  51 k  7 k  26 k  61 k  18 k  387 k  
CI with saturation (threshold 1024) 19 sec.  51 k  7 k  26 k  61 k  18 k  394 k  
CI with saturation (threshold 16) 19 sec.  51 k  7 k  29 k  64 k  19 k  652 k  
CI always saturate (threshold 0) 19 sec.  55 k  8 k  47 k  91 k  34 k  1,399 k  
rapid type analysis 14 sec.  55 k  8 k  1,295 k  
CS (2-obj 1-heap) 5 min.  51 k  7 k  26 k  60 k  17 k  378 k  
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Fig. 8. Benchmark results comparing context-insensitive type-based (CI) points-to analysis without saturation;
saturation thresholds of 1024, 16, and 0; rapid type analysis; and context-sensitive (CS) points-to analysis. For
all numbers, smaller is be�er because all analysis configurations are sound, i.e., we do not trade soundness
for an increase in precision.
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Fig. 9. Detailed results for the three largest benchmarks. RTA: rapid type analysis; numbered columns:
context-insensitive points-to analysis with saturation and the saturation threshold set to that number; CI:
context-insensitive type-based points-to analysis without saturation; CS: context-sensitive points-to analysis
with 2-obj 1-heap context. For all numbers, smaller is be�er.
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Next, we set the saturation threshold to 0. As explained in Section 2.5, this effectively degrades
the precision of the points-to analysis to that of a rapid type analysis, while still doing some
analysis work that a rapid type analysis would not need to do. For comparison, we also include
the results of an actual rapid type analysis implementation that is available in GraalVM Native
Image [24]. In contrast to all the other configurations, this is a separate analysis that does not
share any code with the points-to analysis implementations. Finally, we present numbers for a
context-sensitive (CS) points-to analysis with the context definition that was shown to work best
for Java applications: 2-object-sensitive with a 1-context-sensitive heap and call-site-sensitivity
for static calls [22]. This configuration uses a traditional allocation site abstraction, i.e., is not
type-based like our context-insensitive configurations. While a context-insensitive configuration
with an allocation site abstraction could be evaluated too, it is not reported in this paper because it
must be strictly slower than our type-based context-insensitive analysis, and must be strictly less
precise than our 2-obj 1-heap context-sensitive analysis. Considering the already small precision
differences reported in Figure 8, adding another context-insensitive configuration would not provide
further insights.

While our context-insensitive analysis (with and without saturation) is production-quality and
has been optimized to reduce analysis time, our context-sensitive analysis is not as optimized.
Running the context-sensitive analysis on our benchmarks takes several hours on large servers for
the larger benchmarks. This slow analysis time could likely be improved by further optimizations
of the data structures. We do not claim that a context-sensitive analysis is always that much slower
than a context-insensitive analysis. However, the number of reachable methods and other analysis
counters are valid. We therefore do claim that our configuration of a context-sensitive analysis is
not able to provide meaningful benefits on the number of reachable methods and the precision of
the analysis results for our benchmarks.

All configurations evaluated are sound. While it is usually possible to increase precision by giving
up some soundness, our use case in GraalVM Native Image requires a sound analysis. Otherwise
wrong code would be generated based on the unsound static analysis results, i.e., the binaries
produced by GraalVM Native Image would crash.

Figure 8 presents the detailed results for all benchmarks. In addition to the number of reachable
methods, we also show the number of reachable types. A type is reachable if at least one of its
methods is reachable, if its java.lang.Class constant is used explicitly, or if it is a supertype or
superinterface of a reachable type.
The column Type checks presents the number of type check operations remaining after the

points-to analysis, i.e., the number of type checks that cannot be proven as “always passing” or
“always failing”. We likely cover more source of type checks than related work: in addition to the
instanceof and checkcast bytecode in Java that are explicit type checks, several bytecode in
Java perform an implicit type check. For example, array stores require a store check, and interface
calls require a type check for the receiver object. All sources of type checks mandated by the Java
specification are included in our results.

The column Null checks presents the number of null checks not proven by the points-to analysis.
This is a metric rarely evaluated in related work, but important for the optimization of Java
applications: If a null check cannot be proven, it must be executed to ensure memory safety in Java.
Like with type checks, we also include implicit sources of null checks such as field accesses, array
accesses, and instance method invocations. The column Polymorphic calls reports the number of
calls that could not be de-virtualized by the analysis, i.e., the number of method call sites where
more than one method could be invoked at run time.

The number of Type checks, Null checks, and Polymorphic calls is not reported by the rapid type
analysis that we are using for comparison. But we can reasonably expect that the number would
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be similar to our points-to analysis results with saturation threshold 0. For the metrics that are
available, there is a small but measurable precision difference between rapid type analysis and
saturation threshold 0. Saturation with threshold 0 still tracks “empty” points-to sets, i.e., it is able
to track variables that cannot have a value and whose definition therefore must be dead code. This
leads to fewer reachable methods, because with the rapid type analysis such code and its transitive
closure is seen as reachable.
Finally, the column Call edges shows the number of call graph edges between the reachable

methods. Even though this metric is frequently used in related work, we do not consider it as
valuable as the other metrics. First, it is not “actionable”, i.e., it cannot be used to optimize code.
But more importantly, it mixes linear values (each de-virtualized call site is counted as one edge)
with quadratic values (for each polymorphic call site all possible target methods are counted).

Figure 8 validates our claims that saturation improves scalability with little impact on precision:
While for the smaller benchmarks with less than 100 thousand reachable methods the analysis time
in all non-context-sensitive configurations is similar, the analysis time for the largest benchmark
als is more than 5 times longer without saturation. The relative difference between the context-
insensitive analysis with and without saturation increases when the number of reachable methods
increases, which is a clear sign of the quadratic time complexity of the context-insensitive analysis
that is resolved by saturation. The rapid type analysis is generally a bit faster than the points-to
analysis with saturation, but both grow linearly with the number of reachable methods.

The precision of the points-to analysis with saturation threshold 1024 is nearly indistinguishable
from the precision of the context-insensitive analysis without saturation. Even for the smaller
saturation threshold 16, the number of type checks and the number of polymorphic calls is not
degraded much, while saturation threshold 0 has far worse precision.

7.2 Impact of the Saturation Threshold

To further study the impact of the saturation threshold, Figure 9 shows results for the three largest
benchmarks with saturation thresholds that are exponentially increased up to 2048.

The results show that the actual value of the saturation threshold has little impact on the analysis
time. Within the small variations of analysis time, the threshold leading to the fastest analysis is
benchmark-specific, but it is never a small threshold like 0, 1, or 2: with such a small saturation
threshold, the precision of the analysis is impacted so much that the number of reachable methods
increases, and a higher number of reachable methods means that the analysis needs to do more
work and is therefore slower.

On the other hand, the precision of the analysis improves monotonically when increasing the
saturation threshold. For the number of type checks, the improvement is more gradual, while for
the number of polymorphic calls there is a distinctive precision improvement between saturation
threshold 0 and 1.
The als benchmark shows a significant drop in the number of call edges when going from

saturation threshold 512 to 1024: the number drops from 14 million with threshold 512 to 7.6 million
with threshold 1024. This anomaly is an example of quadratic effects that can make the number of
call edges a misleading metric. The Spark library used by the als benchmark is written in Scala, and
Scala makes heavy use of functional interfaces. In als there are 10,248 implementation classes of the
interface scala.Function1, and 2,028 call sites of Function1.apply(). With saturation threshold
512, 1,248 of the call sites are saturated, while with saturation threshold 1024 only 629 of the call
sites are saturated. The difference of 1,248 - 629 = 619 call sites have around 80 callees without
saturation. That number is still too high to have any meaningful impact on any optimization,
therefore other metrics like the number of type checks and the number of polymorphic calls do not
show any difference between the two saturation thresholds. But reducing the callee count of 619
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call sites from 10,248 to 80 removes (10,248 - 80) * 619 = 6.3 million edges from the call graph. A
single method is responsible for nearly all of the difference in the call graph size.

In summary, we see that saturation is highly effective in reducing the analysis time even when
the saturation threshold is rather large like 1024. For such a large threshold the precision is nearly
indistinguishable from a context-insensitive analysis without saturation, which means it is always
beneficial to use saturation.

7.3 Comparison with the Evaluation in Related Work

The benchmarks columba and soot are the two benchmarks from [36] with the longest analysis time
when they are analyzed with the Tai-e framework [54]. The authors report a context-insensitive anal-
ysis time of 117 seconds for columba and 107 seconds for soot. Our type-based context-insensitive
analysis is significantly faster, requiring 33 seconds and 20 seconds, respectively. But more impor-
tantly, these benchmarks are still too small to show any scalability issues, i.e., our saturation does
not decrease analysis time much because there is no performance problem to solve for such small
applications.
In our evaluation, the two benchmarks are significantly larger compared to the related work.

This has several reasons:

• Our numbers include a full Java runtime system that is written in Java too and analyzed as
well as optimized together with the application. So our number included, e.g., the garbage
collector too. A simple one-line Java “Hello world" application in our system has about
20 thousand reachable methods, most of which are not included in the related work.
• We run with a much newer Java version. The related work uses Java 6, which was released
in 2006, and the JDK has increased significantly in size since then. It is also not clear how
much of the JDK is included in the static analysis results of the related work, while we always
include all reachable JDK methods.
• The difference for the number of type checks is even larger than the difference for the other
metrics. We suspect that casts originating indirectly from instructions other than instanceof
and checkcast are not included in the related work, while our numbers include all direct
and indirect sources of type checks that are necessary for memory-safe execution of Java.

8 RELATED WORK

In the literature, we can find many different approaches on how to formulate and subsequently
implement points-to analysis. The most popular technique is inclusion-based constraint solving,
where an analysis is formulated as repeatedly resolving constraints between points-to sets of
program variables [6]. This technique was proposed by Andersen [2]. Among other approaches,
we can name for example type-system based analyses that utilize unification proposed by Steens-
gaard [52], and analyses based on a value flow graph in which the analysis can be reduced to a graph
reachability problem, as presented by Li et al. [28]. Since our analysis is based on inclusion-based
solving, we focus more on different approaches used within this area.

The frameworks implementing points-to analysis essentially fall into three different categories:
1) imperative, e.g., Spark [26], WALA [21], and Qilin [18] (written purely in Java), 2) declarative, e.g.,
DOOP [9] (written in Datalog), or 3) hybrid, e.g., Paddle [27] (with a declarative core in Datalog
and the rest of the infrastructure in Java). Our implementation is imperative.

Bravenboer et al. introduced the Doop framework which implements the analysis as a declarative
Datalog program where the pointer relations are encoded as datalog rules [9]. Doop achieved
a full order-of-magnitude speedup in runtime when compared to Lhotak and Hendren’s Paddle
framework [27]. Another declared benefit is modularity and configurability which stem from the
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declarative nature of the tool. Many types of static analysis tools were implemented on top of Doop,
for example [13, 22, 48].

Recently, He et al. introduced Qilin, which utilizes an imperative worklist-based algorithm and
outperforms the declarative datalog-based implementation [18]. Our core analysis is similar to
theirs with the exception that our implementation is parallel. Instead of putting new tasks into the
worklist, they are scheduled in a thread pool.

An important property of points-to analysis, and in general any interprocedural analysis, is
context-sensitivity, which allows each program method to be analyzed under different contexts [29].
Different types of context-sensitivity have been studied in the past [22, 37, 45, 48, 55]. Call-site-
sensitivity uses method call-sites as the context, essentially simulating the runtime call stack [45].
In contrast, object-sensitivity uses object allocation sites as context elements [37]. Kastrinis et al.
suggested that while these two approaches are incomparable in precision, interesting points exist
in the design space when choosing different contexts for different program elements, for example,
static vs. virtual calls [22]. The precision improvement depends on how well the context abstraction
partitions the flow facts across the various created contexts [55].
A lot of effort has been put into studying so-called fine-grained context-sensitivity. He et al.

presented a new points-to analysis framework [18] that supports fine-grained context-sensitivity. It
is both selective [34, 49] (with only a subset of methods analyzed context-sensitively) and partial [35]
(with only a subset of variables/objects in a method analyzed context-sensitively).

Fine-grained context-sensitivity significantly increases the state space of configuration options
for points-to analysis. Consequently, the task of selecting which variables to analyze context-
sensitively has been formed [17, 29, 35]. He et al. introduced Turner, whose goal is to select which
variables in a program under k-object context should be analyzed context-sensitively [17]. Ideally,
only so-called precision-critical variables should be considered. However, computing this set exactly
is undecidable. Turner represents a sweet spot between two previous approaches Eagle (precision-
preserving by reasoning about the Context Free Language reachability in the program) [35] and
Zipper (examining the value flows heuristically) [29]. Turner uses the object containment and
an intra-procedural object reachability analysis to decide which variables/objects in the program
should be context-sensitive.

Another direction for scaling object-sensitive points-to analysis is context-debloating [19]. This
approach aims to find so-called context-dependent objects. An object o is context-dependent if
running the analysis without using context for o leads to precision loss. Consequently, context-
sensitive analysis can be applied only to a subset of objects where it improves precision. Recently,
He at al. introduced DebloaterX [16], a container-usage-based approach that identifies context-
dependent objects based on three common container patterns.
While fine-grained context-sensitivity and context-sensitivity in general can be beneficial, our

experiments suggest that a context-insensitive analysis is already precise enough especially for the
use case of optimizing code. Our concept of saturation can be perceived as a step in the opposite
direction. Rather than trying to increase the precision for the performance-critical variables, we
aim at reducing the analysis time by decreasing the precision for variables that cannot be optimized
anyways.

Ma et al. introduced a novel cut-shortcut approach [36] for increasing the precision of points-to
analysis for Java that does not rely on context-sensitivity. The key observation is that an imprecision
occurs for context-insensitivity when object flows from multiple callers are merged in a method
m and subsequently flow outside of m. The proposed algorithm cuts edges that introduce the
imprecision and adds shortcut edges instead that go directly from precise sources to the targets
circumventing the intermediary nodes within m. Our approach using saturation is orthogonal to
cut-shortcut. We already independently discovered and implemented their Local Flow Pattern to
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optimize method arguments returned unchanged by a method. The other patterns could be added
to our analysis with saturation too to make our analysis more precise without harming scalability.
Smaragdakis et al. introduced the idea of simplifying programs for points-to analysis using

set-based reasoning as opposed to value-based reasoning [47]. The authors argue that a signifi-
cant portion of local fields and statements of the analyzed program can be removed by a simple
intraprocedural analysis that takes into account the subset constraints for individual variables.
Such optimizations can be performed offline as a preprocessing step, for example to preprocess
a library, and the output can then be reused by multiple different points-to analyses. The authors
also argue that similar preprocessing can be introduced for other static analysis methods.
Barbar et al. introduced optimizations of data structures used to represent points-to sets in an

inclusion-based set constraint solving [6]. The main idea is to choose object identifiers in such
a way as to reduce the number of empty words in bit-vectors that represent the points-to sets.
The authors present several approaches how to generate the identifiers using a staged analysis,
where an auxiliary cheaper analysis is used as a preprocessing step to bootstrap the main expensive
analysis. The same authors also presented the idea of using hash consing from the functional
programming community to represent points-to sets [7]. Another approach for scaling points-
to analysis is removing cycles in the constraint graphs, explored for example by Hardekopf et
al. [15] and Fähndrich et al. [11]. We solve the problem of expensive set operations by introducing
saturation. The number of values in points-to sets in our implementation never exceeds a given
low threshold.
Another direction on how to improve the scalability of points-to analysis was introduced by

Anastasios et al. [3] as well as Fegade et al. [12]. The key observation utilized by that approach
is that certain data structures, such as the collections in Java, can be represented using simpler
replacement models (called sound-modulo-analysis by Anastasios and semantic models by Fegade).
Models reduce the complex internal implementation while preserving necessary facts for points-to
analysis. Using these models can increase the precision with a manageable performance cost.

Schubert et al. presented ModAnalyzer [44], a novel approach that performs an integrated com-
positional analysis for callgraph, points-to, and context-sensitive data-flow analysis. ModAnalyzer
uses lossless summaries that can be persisted and reused. Utilizing reusable summaries could reduce
the analysis time for our analysis as well. However, ModAnalyzer is based on C++ and the authors
mention that using the same approach for languages using more virtual calls such as Java or C#
could increase the portion of partial summaries, which would degrade the overall performance of
ModAnalyzer.

9 CONCLUSIONS

Scalability of a static analysis is important for use cases where large real-world applications need
to be analyzed as a whole, i.e., where it is not possible to split a whole-program optimization into
individual analysis of smaller modules. Unfortunately, even context-insensitive points-to analysis
has quadratic complexity both for execution time and memory, which until now only left rapid
type analysis as a viable and scalable analysis option. However, a rapid type analysis comes with a
significant loss in analysis precision.

Our type-based context-insensitive points-to analysis with saturation solves this problem: It scales
linearly like a rapid type analysis, but produces analysis results that are nearly indistinguishable
from a context-insensitive points-to analysis that does not use saturation. This leads to a vastly
reduced analysis time for large applications, and still meaningful improvements in analysis time
for small applications. With these properties, we are confident that our points-to analysis with
saturation can replace and improve any current regular context-insensitive points-to analysis as
well as most current usages of a rapid type analysis.
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10 DATA AVAILABILITY STATEMENT

The published artifact [23] is a Docker image that contains Oracle GraalVM for JDK 21 [38], the
benchmarks, and a script to run the benchmarks in the evaluated configurations.
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