
Boosting the Capabilities of Compilers via
Static Analysis

David Kozak1,2

PhD Student – 3rd year
Supervisor FIT: Tomas Vojnar1

Supervisor Oracle: Christian Wimmer2

1Faculty of Information Technology, Brno University of Technology, Czech Republic
2Oracle Labs



Activity in the Past Year

Accepted:
Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C)

Small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A)

With Tomas Cerny from Baylor University, now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*)

Flagship conference (Google Scholar H5: 50, #9 of all publication channels in
Software Systems)

Submitted:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

The main focus of my last year and this presentation

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 1 / 18



Topic Overview

Boosting the Capabilities of Compilers via Static Analysis



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers

Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis

What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis
What is new?

Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly

Closed-world ahead-of-time compilation model
Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis

Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers
Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 3 / 18



GraalVM Native Image

Research in collaboration with Oracle Labs

GraalVM Native Image
Ahead-of-time compiler for Java bytecode
Produces self-contained binaries

Application

Libraries

Runtime

Binary

Analysis

Initialization

Snapshot

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 4 / 18



GraalVM Native Image

Research in collaboration with Oracle Labs
GraalVM Native Image

Ahead-of-time compiler for Java bytecode
Produces self-contained binaries

Application

Libraries

Runtime

Binary

Analysis

Initialization

Snapshot

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 4 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis

Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)

Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...

Uses a typeflow graph modelling interprocedural value propagation
Nodes

Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .

Relevant instructions – method invocations, type-checks, . . .
Edges

Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)

Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis
Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types

D. Kozak · Boosting the Capabilities of Compilers via Static Analysis · 5 / 18



Partially Flow-Sensitive Points-to Analysis
using Predicates
Submitted to OOPSLA 24

David Kozak1,2 Tomas Vojnar1 Christian Wimmer2 Codrut Stancu2

1Faculty of Information Technology, Brno University of Technology, Czech Republic

2Oracle Labs



Introduction

Flow-sensitivite analysis maintains a program state for each program point
Precise, expensive

Flow-insensitive analysis scales well, but is imprecise
Fast, lacks precision

Partial flow-sensitivity as the middle ground
Where to set the threshold?

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 7 / 18



Introduction

Flow-sensitivite analysis maintains a program state for each program point
Precise, expensive

Flow-insensitive analysis scales well, but is imprecise
Fast, lacks precision

Partial flow-sensitivity as the middle ground
Where to set the threshold?

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 7 / 18



Introduction

Flow-sensitivite analysis maintains a program state for each program point
Precise, expensive

Flow-insensitive analysis scales well, but is imprecise
Fast, lacks precision

Partial flow-sensitivity as the middle ground

Where to set the threshold?

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 7 / 18



Introduction

Flow-sensitivite analysis maintains a program state for each program point
Precise, expensive

Flow-insensitive analysis scales well, but is imprecise
Fast, lacks precision

Partial flow-sensitivity as the middle ground
Where to set the threshold?

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 7 / 18



Motivating Example 1 - Default Value

class Scene {
void render(..., Display display) {
if (display == null) {
display = new FrameDisplay();

}
...

}
}

class BucketRenderer {
void render(Display display) {
...
display.imageBegin();
...

}
}

FrameDisplay is only instantiated iff display is null
What if we know that display is actually never null?
FrameDisplay.imageBegin makes Java GUI libraries Swing and AWT reachable

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 8 / 18



Motivating Example 1 - Default Value

class Scene {
void render(..., Display display) {
if (display == null) {
display = new FrameDisplay();

}
...

}
}

class BucketRenderer {
void render(Display display) {
...
display.imageBegin();
...

}
}

FrameDisplay is only instantiated iff display is null

What if we know that display is actually never null?
FrameDisplay.imageBegin makes Java GUI libraries Swing and AWT reachable

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 8 / 18



Motivating Example 1 - Default Value

class Scene {
void render(..., Display display) {
if (display == null) {
display = new FrameDisplay();

}
...

}
}

class BucketRenderer {
void render(Display display) {
...
display.imageBegin();
...

}
}

FrameDisplay is only instantiated iff display is null
What if we know that display is actually never null?

FrameDisplay.imageBegin makes Java GUI libraries Swing and AWT reachable

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 8 / 18



Motivating Example 1 - Default Value

class Scene {
void render(..., Display display) {
if (display == null) {
display = new FrameDisplay();

}
...

}
}

class BucketRenderer {
void render(Display display) {
...
display.imageBegin();
...

}
}

FrameDisplay is only instantiated iff display is null
What if we know that display is actually never null?
FrameDisplay.imageBegin makes Java GUI libraries Swing and AWT reachable

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 8 / 18



Motivating Example 2 - Optional Invocation

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Virtual threads are an experimental feature
Not enabled by default
The block guarded by if(thread.isVirtual()) is then dead code

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 9 / 18



Motivating Example 2 - Optional Invocation

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Virtual threads are an experimental feature

Not enabled by default
The block guarded by if(thread.isVirtual()) is then dead code

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 9 / 18



Motivating Example 2 - Optional Invocation

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Virtual threads are an experimental feature
Not enabled by default

The block guarded by if(thread.isVirtual()) is then dead code

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 9 / 18



Motivating Example 2 - Optional Invocation

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Virtual threads are an experimental feature
Not enabled by default
The block guarded by if(thread.isVirtual()) is then dead code

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 9 / 18



Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving
We have to encode the relationship between the condition and its branches

Considering only types is not enough, we have to propagate:
nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 10 / 18



Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving

We have to encode the relationship between the condition and its branches
Considering only types is not enough, we have to propagate:

nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 10 / 18



Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving
We have to encode the relationship between the condition and its branches

Considering only types is not enough, we have to propagate:
nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 10 / 18



Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving
We have to encode the relationship between the condition and its branches

Considering only types is not enough, we have to propagate:
nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 10 / 18



Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving
We have to encode the relationship between the condition and its branches

Considering only types is not enough, we have to propagate:
nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 10 / 18



Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving
We have to encode the relationship between the condition and its branches

Considering only types is not enough, we have to propagate:
nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 10 / 18



Branch-Specific FilterFlows

if (x != null) {
use1(x);

} else {
use2(x);

}

x

x != null

use1

x == null

use2

Condition is split into multiple FilterFlows
Each FilterFlow filters the input based on a condition (e.g. null-check)
Nodes from individual branches use the nearest FilterFlow instead of x

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 11 / 18



Branch-Specific FilterFlows

if (x != null) {
use1(x);

} else {
use2(x);

}

x

x != null

use1

x == null

use2

Condition is split into multiple FilterFlows

Each FilterFlow filters the input based on a condition (e.g. null-check)
Nodes from individual branches use the nearest FilterFlow instead of x

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 11 / 18



Branch-Specific FilterFlows

if (x != null) {
use1(x);

} else {
use2(x);

}

x

x != null

use1

x == null

use2

Condition is split into multiple FilterFlows
Each FilterFlow filters the input based on a condition (e.g. null-check)

Nodes from individual branches use the nearest FilterFlow instead of x

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 11 / 18



Branch-Specific FilterFlows

if (x != null) {
use1(x);

} else {
use2(x);

}

x

x != null

use1

x == null

use2

Condition is split into multiple FilterFlows
Each FilterFlow filters the input based on a condition (e.g. null-check)
Nodes from individual branches use the nearest FilterFlow instead of x

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 11 / 18



Predicate Edges

if (x > 10) {
m();

} else {
f();

}

x

x > 10

invoke m()

x ≤ 10

invoke f()

42

Predicate edges established between conditions and nodes from branches
Target of a predicate edge propagates value iff the source has non-empty state
Primitives modelled using a simple 3-tier lattice

Any

0 1 2 ...-1... -2

Empty

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 12 / 18



Predicate Edges

if (x > 10) {
m();

} else {
f();

}

x

x > 10

invoke m()

x ≤ 10

invoke f()

42

Predicate edges established between conditions and nodes from branches

Target of a predicate edge propagates value iff the source has non-empty state
Primitives modelled using a simple 3-tier lattice

Any

0 1 2 ...-1... -2

Empty

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 12 / 18



Predicate Edges

if (x > 10) {
m();

} else {
f();

}

x

x > 10

invoke m()

x ≤ 10

invoke f()

42

Predicate edges established between conditions and nodes from branches
Target of a predicate edge propagates value iff the source has non-empty state

Primitives modelled using a simple 3-tier lattice

Any

0 1 2 ...-1... -2

Empty

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 12 / 18



Predicate Edges

if (x > 10) {
m();

} else {
f();

}

x

x > 10

invoke m()

x ≤ 10

invoke f()

42

Predicate edges established between conditions and nodes from branches
Target of a predicate edge propagates value iff the source has non-empty state
Primitives modelled using a simple 3-tier lattice

Any

0 1 2 ...-1... -2

Empty

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 12 / 18



Evaluation

Prototype implemented in GraalVM Native Image

Evaluated on:
Renaissance 0.15.0 (R) – a well-established Java benchmark suite
Dacapo 9.12 (D) – a well-established Java benchmark suite
Microservices (M) – a set of microservice applications using various frameworks

Metrics:
Analysis Time
Reachable Methods
Counter Metrics – how many instances of given instructions could not be optimized

Type Checks
Null Checks
Primitive Checks
Polymorphic Calls

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 13 / 18



Evaluation

Prototype implemented in GraalVM Native Image
Evaluated on:

Renaissance 0.15.0 (R) – a well-established Java benchmark suite
Dacapo 9.12 (D) – a well-established Java benchmark suite
Microservices (M) – a set of microservice applications using various frameworks

Metrics:
Analysis Time
Reachable Methods
Counter Metrics – how many instances of given instructions could not be optimized

Type Checks
Null Checks
Primitive Checks
Polymorphic Calls

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 13 / 18



Evaluation

Prototype implemented in GraalVM Native Image
Evaluated on:

Renaissance 0.15.0 (R) – a well-established Java benchmark suite
Dacapo 9.12 (D) – a well-established Java benchmark suite
Microservices (M) – a set of microservice applications using various frameworks

Metrics:
Analysis Time
Reachable Methods
Counter Metrics – how many instances of given instructions could not be optimized

Type Checks
Null Checks
Primitive Checks
Polymorphic Calls

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 13 / 18



Evaluation

Prototype implemented in GraalVM Native Image
Evaluated on:

Renaissance 0.15.0 (R) – a well-established Java benchmark suite
Dacapo 9.12 (D) – a well-established Java benchmark suite
Microservices (M) – a set of microservice applications using various frameworks

Metrics:
Analysis Time
Reachable Methods
Counter Metrics – how many instances of given instructions could not be optimized

Type Checks
Null Checks
Primitive Checks
Polymorphic Calls

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 13 / 18



Normalized Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ak
ka

-uct als

ch
i-s

quare

dec
-tr

ee

fin
ag

le-
ch

irp
er

fin
ag

le-
http

fj-k
mea

ns

future-
gen

eti
c

log-re
gres

sio
n

mnem
onics

par-
mnem

onics

philo
so

phers

rea
cto

rs

rx-
sc

rab
ble

sc
ala

-doku

sc
ala

-km
ea

ns

sc
ala

-st
m-

sc
rab

ble

Analysis Time Reach. Methods Type Checks Null Checks Prim Checks Poly Calls Threshold

a) Renaissance

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 14 / 18



Normalized Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

fop h2

jyt
hon

luindex

luse
arc

h
pmd

su
nflo

w
xa

lan

b) Dacapo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M. H
ell

oworld

M. O
rd

er

M. P
ay

men
t

M. U
se

r

Q. H
ell

oworld

Q. R
eg

ist
ry

Q. T
ika

S. H
ell

oworld

S Petc
lin

ic

c) Microservices

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 15 / 18



Overall Results

Reduction in reachable methods per bench suite (other metrics follow the same trend):
Renaissance – max 13.5%, min 3.1%, avg 7.2%
Dacapo – max 52.3%, min 3.1%, avg 12.9%
Microservices – max 8.2%, min 2.7%, avg 5.8%

Overall 8.2% reduction without negatively impacting the analysis time

D. Kozak, T. Vojnar, Ch. Wimmer, C. Stancu · Partially Flow-Sensitive Points-to Analysis using Predicates · 16 / 18



Status Update



Status Update
Accepted Publications:

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C)

Small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A)

With Tomas Cerny from Baylor University, now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*)

Flagship conference (Google Scholar H5: 50, #9 of all publication channels in
Software Systems)

Submitted Publications:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

PhD Checklist:
Time: Fulfilling the plan, want to finish in 1-2 years
Publications: 3 accepted, 1 submitted
Quality Publications (Core B+): 2 accepted (A*,A), 1 submitted (A)
Internship, international projects: 3.5 years at the GraalVM team at Oracle Labs

David Kozak · Boosting the Capabilities of Compilers via Static Analysis · 18 / 18



Status Update
Accepted Publications:

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C)

Small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A)

With Tomas Cerny from Baylor University, now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*)

Flagship conference (Google Scholar H5: 50, #9 of all publication channels in
Software Systems)

Submitted Publications:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

PhD Checklist:
Time: Fulfilling the plan, want to finish in 1-2 years
Publications: 3 accepted, 1 submitted
Quality Publications (Core B+): 2 accepted (A*,A), 1 submitted (A)
Internship, international projects: 3.5 years at the GraalVM team at Oracle Labs

David Kozak · Boosting the Capabilities of Compilers via Static Analysis · 18 / 18



Appendix – All Publications
Accepted:

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C) – small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A) – with Tomas Cerny from Baylor University,
now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*) – flagship
conference (Google Scholar H5: 50, #9 of all publication channels in Software Systems)

Submitted:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

In the making:
Extending the OOPSLA paper with richer domains for primitive values
Improving points-to analysis via compiler optimizations
Tools for debugging points-to analysis

Planned:
”Baseline” Native Image points-to analysis paper
Change-impact analysis for microservices

David Kozak · Boosting the Capabilities of Compilers via Static Analysis · 18 / 18



Appendix II.

Running Example



Running Example – Source

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

David Kozak · Boosting the Capabilities of Compilers via Static Analysis · 18 / 18



Running Example – TypeFlowGraph onExit

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

David Kozak · Boosting the Capabilities of Compilers via Static Analysis · 18 / 18



Running Example – TypeFlowGraph isVirtual

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

David Kozak · Boosting the Capabilities of Compilers via Static Analysis · 18 / 18



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

Return

VSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}



FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}

FilterCond ̸=l

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {

return this instanceof
BaseVirtualThread;

}
}


