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Activity in the Past Year

Accepted:
Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C)

Small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A)

With Tomas Cerny from Baylor University, now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*)

Flagship conference (Google Scholar H5: 50, #9 of all publication channels in
Software Systems)

Submitted:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

The main focus of my last year and this presentation
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Topic Overview

Boosting the Capabilities of Compilers via Static Analysis



Boosting the Capabilities of Compilers via Static Analysis

Static analysis embedded inside compilers

Old area – the genesis of static analysis
What is new?
Shift to the cloud – make small applications that start quickly
Closed-world ahead-of-time compilation model

Whole-program analysis
Aggressive optimizations

New use cases, e.g. microservices
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GraalVM Native Image

Research in collaboration with Oracle Labs

GraalVM Native Image
Ahead-of-time compiler for Java bytecode
Produces self-contained binaries

Application

Libraries

Runtime

Binary

Analysis

Initialization

Snapshot
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Static Analysis in GraalVM Native Image

Context-insensitive type-based points-to analysis

Approximates the values of pointers/references at runtime.

Computes reachable methods from entry points (e.g. main)
Allows optimizations st. type-check elimination, devirtualization, ...
Uses a typeflow graph modelling interprocedural value propagation

Nodes
Memory locations – variables, parameters, object fields, . . .
Relevant instructions – method invocations, type-checks, . . .

Edges
Use – data-flow from sources (allocations) to sinks (usages)
Observer – other dependencies, e.g. receiver to method invocation

Each node has a value state – a set of types
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Partially Flow-Sensitive Points-to Analysis
using Predicates
Submitted to OOPSLA 24

David Kozak1,2 Tomas Vojnar1 Christian Wimmer2 Codrut Stancu2

1Faculty of Information Technology, Brno University of Technology, Czech Republic

2Oracle Labs



Introduction

Flow-sensitivite analysis maintains a program state for each program point
Precise, expensive

Flow-insensitive analysis scales well, but is imprecise
Fast, lacks precision

Partial flow-sensitivity as the middle ground
Where to set the threshold?
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Motivating Example 1 - Default Value

class Scene {
void render(..., Display display) {
if (display == null) {
display = new FrameDisplay();

}
...

}
}

class BucketRenderer {
void render(Display display) {
...
display.imageBegin();
...

}
}

FrameDisplay is only instantiated iff display is null
What if we know that display is actually never null?
FrameDisplay.imageBegin makes Java GUI libraries Swing and AWT reachable
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Motivating Example 2 - Optional Invocation

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Virtual threads are an experimental feature
Not enabled by default
The block guarded by if(thread.isVirtual()) is then dead code
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Key Observations

Conditions can often be evaluated with a simple value flow analysis
No need for SMT solving
We have to encode the relationship between the condition and its branches

Considering only types is not enough, we have to propagate:
nullability of references
primitive values across method boundaries

Conditions, e.g. null-check, filter their input values
More precise information is known within the successor branches

if(x instanceof A){
foo(x); // here x is a subtype of A

}

We have expressed all the cases above as an extension of points-to analysis
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Branch-Specific FilterFlows

if (x != null) {
use1(x);

} else {
use2(x);

}

x

x != null

use1

x == null

use2

Condition is split into multiple FilterFlows
Each FilterFlow filters the input based on a condition (e.g. null-check)
Nodes from individual branches use the nearest FilterFlow instead of x
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Predicate Edges

if (x > 10) {
m();

} else {
f();

}

x

x > 10

invoke m()

x ≤ 10

invoke f()

42

Predicate edges established between conditions and nodes from branches
Target of a predicate edge propagates value iff the source has non-empty state
Primitives modelled using a simple 3-tier lattice

Any

0 1 2 ...-1... -2

Empty
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Evaluation

Prototype implemented in GraalVM Native Image

Evaluated on:
Renaissance 0.15.0 (R) – a well-established Java benchmark suite
Dacapo 9.12 (D) – a well-established Java benchmark suite
Microservices (M) – a set of microservice applications using various frameworks

Metrics:
Analysis Time
Reachable Methods
Counter Metrics – how many instances of given instructions could not be optimized

Type Checks
Null Checks
Primitive Checks
Polymorphic Calls
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Normalized Metrics
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Normalized Metrics
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Overall Results

Reduction in reachable methods per bench suite (other metrics follow the same trend):
Renaissance – max 13.5%, min 3.1%, avg 7.2%
Dacapo – max 52.3%, min 3.1%, avg 12.9%
Microservices – max 8.2%, min 2.7%, avg 5.8%

Overall 8.2% reduction without negatively impacting the analysis time
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Status Update
Accepted Publications:

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C)

Small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A)

With Tomas Cerny from Baylor University, now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*)

Flagship conference (Google Scholar H5: 50, #9 of all publication channels in
Software Systems)

Submitted Publications:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

PhD Checklist:
Time: Fulfilling the plan, want to finish in 1-2 years
Publications: 3 accepted, 1 submitted
Quality Publications (Core B+): 2 accepted (A*,A), 1 submitted (A)
Internship, international projects: 3.5 years at the GraalVM team at Oracle Labs
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Appendix – All Publications
Accepted:

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image –
MPLR 23 (Core C) – small, specialised, strong participation of the community
Software Architecture Reconstruction for Microservice Systems using Static Analysis via
GraalVM Native Image – SANER 24 (Core A) – with Tomas Cerny from Baylor University,
now University of Arizona
Scaling Type-Based Points-to Analysis with Saturation – PLDI 24 (Core A*) – flagship
conference (Google Scholar H5: 50, #9 of all publication channels in Software Systems)

Submitted:
Partially Flow-Sensitive Points-to Analysis using Predicates – OOPSLA 24 (Core A)

In the making:
Extending the OOPSLA paper with richer domains for primitive values
Improving points-to analysis via compiler optimizations
Tools for debugging points-to analysis

Planned:
”Baseline” Native Image points-to analysis paper
Change-impact analysis for microservices
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Running Example – Source

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}
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Running Example – TypeFlowGraph onExit

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {
if (thread.isVirtual())
virtualThreads.remove(thread);

}
}

FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()
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Running Example – TypeFlowGraph isVirtual

class Thread {
public boolean isVirtual() {
return this instanceof

BaseVirtualThread;
}

}

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return
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FilterCond ̸=l

Invoke isVirtual() 0

FilterCond ̸=r

Param thread

Param this

LoadField virtualThreads

Invoke remove()

VirtualThread /∈ VSin(Param thread)

Param this

instanceof T !instanceof T

1 0
MergePred

Merge

Return

MergePred
0

Merge

ReturnVSout(Return) = {0}
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