
Comparing Rapid Type Analysis with
Points-To Analysis in GraalVM Native

Image

David Kozak 1,2, Vojin Jovanovic 2, Codrut Stancu 2,
Tomáš Vojnar 1, Christian Wimmer 2

1Brno University of Technology, Faculty of Information Technology

2GraalVM, Oracle Labs

ikozak@fit.vutbr.cz

October 22, 2023



Motivation - Call Graph Construction

‚ Call graph construction for ahead-of-time compilers.

‚ Used to detect reachable program elements.

‚ Key difficulty - virtual methods.

‚ For each virtual invoke e.mpq in each reachable method,
determine all callees that can be called at runtime.

main f: e.m()
A instantiated

m()

B instantiated

m()

C instantiated

m()

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 2 / 20



Motivation - Call Graph Construction

‚ Call graph construction for ahead-of-time compilers.

‚ Used to detect reachable program elements.

‚ Key difficulty - virtual methods.

‚ For each virtual invoke e.mpq in each reachable method,
determine all callees that can be called at runtime.

main f: e.m()
A instantiated

m()

B instantiated

m()

C instantiated

m()

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 2 / 20



Motivation - Call Graph Construction

‚ Call graph construction for ahead-of-time compilers.

‚ Used to detect reachable program elements.

‚ Key difficulty - virtual methods.

‚ For each virtual invoke e.mpq in each reachable method,
determine all callees that can be called at runtime.

main f: e.m()
A instantiated

m()

B instantiated

m()

C instantiated

m()

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 2 / 20



Motivation - Call Graph Construction

‚ Call graph construction for ahead-of-time compilers.

‚ Used to detect reachable program elements.

‚ Key difficulty - virtual methods.

‚ For each virtual invoke e.mpq in each reachable method,
determine all callees that can be called at runtime.

main f: e.m()
A instantiated

m()

B instantiated

m()

C instantiated

m()

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 2 / 20



Motivation - Call Graph Construction

‚ Call graph construction for ahead-of-time compilers.

‚ Used to detect reachable program elements.

‚ Key difficulty - virtual methods.

‚ For each virtual invoke e.mpq in each reachable method,
determine all callees that can be called at runtime.

main f: e.m()
A instantiated

m()

B instantiated

m()

C instantiated

m()

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 2 / 20



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java.

‚ Closed-world assumption:
‚ All code that can be executed at runtime has to be

available at compile time.

‚ All dynamic features, e.g. reflection, proxy, dynamic class
loading, have to be explicitly configured.

‚ Produces standalone binaries containing the application
along with all dependencies and runtime components.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 3 / 20



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java.

‚ Closed-world assumption:
‚ All code that can be executed at runtime has to be

available at compile time.

‚ All dynamic features, e.g. reflection, proxy, dynamic class
loading, have to be explicitly configured.

‚ Produces standalone binaries containing the application
along with all dependencies and runtime components.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 3 / 20



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java.

‚ Closed-world assumption:
‚ All code that can be executed at runtime has to be

available at compile time.

‚ All dynamic features, e.g. reflection, proxy, dynamic class
loading, have to be explicitly configured.

‚ Produces standalone binaries containing the application
along with all dependencies and runtime components.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 3 / 20



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java.

‚ Closed-world assumption:
‚ All code that can be executed at runtime has to be

available at compile time.

‚ All dynamic features, e.g. reflection, proxy, dynamic class
loading, have to be explicitly configured.

‚ Produces standalone binaries containing the application
along with all dependencies and runtime components.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 3 / 20



GraalVM Native Image

‚ Combination of points-to analysis, class initialization at build
time and heap snapshotting.

Application

Libraries

Runtime

Binary

Analysis

Initialization

Snapshot

‚ Fixed-point computation starting from a set of entrypoints.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 4 / 20



GraalVM Native Image

‚ Combination of points-to analysis, class initialization at build
time and heap snapshotting.

Application

Libraries

Runtime

Binary

Analysis

Initialization

Snapshot

‚ Fixed-point computation starting from a set of entrypoints.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 4 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.
‚ Fit into the environment of Native Image - interact with

features such as heap snapshotting.
‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.
‚ Fit into the environment of Native Image - interact with

features such as heap snapshotting.
‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.
‚ Fit into the environment of Native Image - interact with

features such as heap snapshotting.
‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:

‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.
‚ Fit into the environment of Native Image - interact with

features such as heap snapshotting.
‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.

‚ Reasonable precision - do not increase the workload for
the compilation phase too much.

‚ Fit into the environment of Native Image - interact with
features such as heap snapshotting.

‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.

‚ Fit into the environment of Native Image - interact with
features such as heap snapshotting.

‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.
‚ Fit into the environment of Native Image - interact with

features such as heap snapshotting.

‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Motivation

However, points-to analysis can be time-consuming.

Analysis of Spring Petclinic can take up to 159 seconds.

Main Research Question

Is it possible to reduce the analysis time by replacing points-to
analysis with an alternative, cheaper analysis?

Criteria:
‚ Scalability - debug mode for Native Image.
‚ Reasonable precision - do not increase the workload for

the compilation phase too much.
‚ Fit into the environment of Native Image - interact with

features such as heap snapshotting.
‚ Incrementality - reuse results from previous compilations.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 5 / 20



Call Graph Construction

There is a plethora of call graph construction algorithms:
‚ Unique Name Analysis,

‚ Class Hierarchy Analysis,
‚ Rapid Type Analysis, and
‚ 0-CFA (Control Flow Analysis).

After careful examination, we chose Rapid Type Analysis, which
offers a good tradeoff between precision and scalability.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 6 / 20



Call Graph Construction

There is a plethora of call graph construction algorithms:
‚ Unique Name Analysis,
‚ Class Hierarchy Analysis,

‚ Rapid Type Analysis, and
‚ 0-CFA (Control Flow Analysis).

After careful examination, we chose Rapid Type Analysis, which
offers a good tradeoff between precision and scalability.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 6 / 20



Call Graph Construction

There is a plethora of call graph construction algorithms:
‚ Unique Name Analysis,
‚ Class Hierarchy Analysis,
‚ Rapid Type Analysis, and

‚ 0-CFA (Control Flow Analysis).

After careful examination, we chose Rapid Type Analysis, which
offers a good tradeoff between precision and scalability.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 6 / 20



Call Graph Construction

There is a plethora of call graph construction algorithms:
‚ Unique Name Analysis,
‚ Class Hierarchy Analysis,
‚ Rapid Type Analysis, and
‚ 0-CFA (Control Flow Analysis).

After careful examination, we chose Rapid Type Analysis, which
offers a good tradeoff between precision and scalability.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 6 / 20



Call Graph Construction

There is a plethora of call graph construction algorithms:
‚ Unique Name Analysis,
‚ Class Hierarchy Analysis,
‚ Rapid Type Analysis, and
‚ 0-CFA (Control Flow Analysis).

After careful examination, we chose Rapid Type Analysis, which
offers a good tradeoff between precision and scalability.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 6 / 20



Rapid Type Analysis

The basic effect of Rapid Type Analysis can be summarized
using the following equations. For R denoting a set of
reachable methods and I denoting a set of instantiated types:

1 main P R.

2 @m P R @e.f pq P CallExprpmq

@t P SubtypespStaticTypepeqq.
t P I ^ StaticLookuppt , f q “ m1

ùñ m1 P R.

3 @m P R @new Cpq P

InstExprpmq. C P I.

e.f()m A

f

staticType

B

fC

f

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 7 / 20



Rapid Type Analysis

The basic effect of Rapid Type Analysis can be summarized
using the following equations. For R denoting a set of
reachable methods and I denoting a set of instantiated types:

1 main P R.

2 @m P R @e.f pq P CallExprpmq

@t P SubtypespStaticTypepeqq.
t P I ^ StaticLookuppt , f q “ m1

ùñ m1 P R.

3 @m P R @new Cpq P

InstExprpmq. C P I.

e.f()m A

f

staticType

B

fC

f

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 7 / 20



Rapid Type Analysis

The basic effect of Rapid Type Analysis can be summarized
using the following equations. For R denoting a set of
reachable methods and I denoting a set of instantiated types:

1 main P R.

2 @m P R @e.f pq P CallExprpmq

@t P SubtypespStaticTypepeqq.
t P I ^ StaticLookuppt , f q “ m1

ùñ m1 P R.

3 @m P R @new Cpq P

InstExprpmq. C P I.

e.f()m

A

f

staticType

B

fC

f

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 7 / 20



Rapid Type Analysis

The basic effect of Rapid Type Analysis can be summarized
using the following equations. For R denoting a set of
reachable methods and I denoting a set of instantiated types:

1 main P R.

2 @m P R @e.f pq P CallExprpmq

@t P SubtypespStaticTypepeqq.
t P I ^ StaticLookuppt , f q “ m1

ùñ m1 P R.

3 @m P R @new Cpq P

InstExprpmq. C P I.

e.f()m A

f

staticType

B

fC

f

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 7 / 20



Rapid Type Analysis

The basic effect of Rapid Type Analysis can be summarized
using the following equations. For R denoting a set of
reachable methods and I denoting a set of instantiated types:

1 main P R.

2 @m P R @e.f pq P CallExprpmq

@t P SubtypespStaticTypepeqq.
t P I ^ StaticLookuppt , f q “ m1

ùñ m1 P R.

3 @m P R @new Cpq P

InstExprpmq. C P I.

e.f()m A

f

staticType

B

f

C

f

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 7 / 20



Rapid Type Analysis

The basic effect of Rapid Type Analysis can be summarized
using the following equations. For R denoting a set of
reachable methods and I denoting a set of instantiated types:

1 main P R.

2 @m P R @e.f pq P CallExprpmq

@t P SubtypespStaticTypepeqq.
t P I ^ StaticLookuppt , f q “ m1

ùñ m1 P R.

3 @m P R @new Cpq P

InstExprpmq. C P I.

e.f()m A

f

staticType

B

fC

f

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 7 / 20



Rapid Type Analysis in GraalVM NI

Rapid Type Analysis has been well-studied, so let us now clearly
distinguish our contributions from the state of the art:

‚ We designed an extension of rapid type analysis suited for
the context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ We provided a detailed comparison of the new variant of
RTA with a points-to analysis for ahead-of-time compilation
of Java.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 8 / 20



Rapid Type Analysis in GraalVM NI

Rapid Type Analysis has been well-studied, so let us now clearly
distinguish our contributions from the state of the art:

‚ We designed an extension of rapid type analysis suited for
the context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ We provided a detailed comparison of the new variant of
RTA with a points-to analysis for ahead-of-time compilation
of Java.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 8 / 20



Rapid Type Analysis in GraalVM NI

Rapid Type Analysis has been well-studied, so let us now clearly
distinguish our contributions from the state of the art:

‚ We designed an extension of rapid type analysis suited for
the context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ We provided a detailed comparison of the new variant of
RTA with a points-to analysis for ahead-of-time compilation
of Java.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 8 / 20



Rapid Type Analysis in GraalVM NI

Rapid Type Analysis has been well-studied, so let us now clearly
distinguish our contributions from the state of the art:

‚ We designed an extension of rapid type analysis suited for
the context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ We provided a detailed comparison of the new variant of
RTA with a points-to analysis for ahead-of-time compilation
of Java.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 8 / 20



Rapid Type Analysis in GraalVM NI

Rapid Type Analysis has been well-studied, so let us now clearly
distinguish our contributions from the state of the art:

‚ We designed an extension of rapid type analysis suited for
the context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ We provided a detailed comparison of the new variant of
RTA with a points-to analysis for ahead-of-time compilation
of Java.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 8 / 20



RTA - Core Algorithm

‚ The core algorithm starts with a set of root methods that
are considered reachable.

‚ Each reachable method is parsed into the intermediate
representation from which the method summary is
extracted.

‚ The summary is then used to update the state of the
analysis, possibly making new methods reachable.

‚ The update is done by calling specialized register*
methods.

‚ Once a given method is made reachable, the decision is
never reverted.

‚ The analysis stops once a fixed-point is reached.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 9 / 20



RTA - Core Algorithm

‚ The core algorithm starts with a set of root methods that
are considered reachable.

‚ Each reachable method is parsed into the intermediate
representation from which the method summary is
extracted.

‚ The summary is then used to update the state of the
analysis, possibly making new methods reachable.

‚ The update is done by calling specialized register*
methods.

‚ Once a given method is made reachable, the decision is
never reverted.

‚ The analysis stops once a fixed-point is reached.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 9 / 20



RTA - Core Algorithm

‚ The core algorithm starts with a set of root methods that
are considered reachable.

‚ Each reachable method is parsed into the intermediate
representation from which the method summary is
extracted.

‚ The summary is then used to update the state of the
analysis, possibly making new methods reachable.

‚ The update is done by calling specialized register*
methods.

‚ Once a given method is made reachable, the decision is
never reverted.

‚ The analysis stops once a fixed-point is reached.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 9 / 20



RTA - Core Algorithm

‚ The core algorithm starts with a set of root methods that
are considered reachable.

‚ Each reachable method is parsed into the intermediate
representation from which the method summary is
extracted.

‚ The summary is then used to update the state of the
analysis, possibly making new methods reachable.

‚ The update is done by calling specialized register*
methods.

‚ Once a given method is made reachable, the decision is
never reverted.

‚ The analysis stops once a fixed-point is reached.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 9 / 20



RTA - Core Algorithm

‚ The core algorithm starts with a set of root methods that
are considered reachable.

‚ Each reachable method is parsed into the intermediate
representation from which the method summary is
extracted.

‚ The summary is then used to update the state of the
analysis, possibly making new methods reachable.

‚ The update is done by calling specialized register*
methods.

‚ Once a given method is made reachable, the decision is
never reverted.

‚ The analysis stops once a fixed-point is reached.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 9 / 20



RTA Core Algorithm

Algorithm 1 RTA Core Algorithm.
1: for m P rootMethods do
2: registerAsInvokedpmq

3: procedure REGISTERASINVOKED(m)
4: if markpm.isInvokedq then Ź atomic check
5: scheduleppq Ñ onInvokedpmqq Ź schedule new task
6: procedure ONINVOKED(m)
7: irGraph Ð parseMethodpmq

8: s Ð extractSummarypirGraphq

9: applySummarypsq

‚ All register* methods guarded by atomic checks.
‚ Each class/method/field is processed only once.

‚ Non-trivial operations scheduled as separate tasks.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 10 / 20



Method Summaries for RTA

‚ The effect of each method can be described using
a method summary consisting of sets containing the
following information:

‚ directly invoked methods,
‚ virtually invoked methods,
‚ accessed types,
‚ instantiated types,
‚ read fields,
‚ written fields, and
‚ embedded constants.

‚ These summaries can be extracted by a linear pass over
the intermediate representation.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 11 / 20



Method Summaries for RTA

‚ The effect of each method can be described using
a method summary consisting of sets containing the
following information:

‚ directly invoked methods,
‚ virtually invoked methods,
‚ accessed types,
‚ instantiated types,
‚ read fields,
‚ written fields, and
‚ embedded constants.

‚ These summaries can be extracted by a linear pass over
the intermediate representation.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 11 / 20



Handling of Virtual Methods

Algorithm 2 RTA handling of virtual methods.
1: procedure REGISTERASVIRTUALINVOKED(m)
2: if markpm.isVirtInvokedq then
3: t Ð m.declType
4: t .virtInvoked.addpmq

5:
6: for subt P t .instSubtypes do
7: res Ð subt .resolveMethodpmq

8: registerAsInvokedpresq

e.f()m A

f

staticType

B

fC

f

‚ First, method m is marked as virtual invoked.
‚ Then, all instantiated subtypes of the declaring type are

considered when computing the call targets.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 12 / 20



Handling of Virtual Methods

Algorithm 3 RTA handling of virtual methods.
1: procedure REGISTERASINSTANTIATED(t)
2: if markpt .isInstq then
3: for st P t .superTypes do
4: st .instSubtypes.addptq

5: for st P t .superTypes do
6: for m P st .virtInvoked do
7: res Ð t .resolveMethodpmq

8: registerAsInvokedpresq

C

new f

B

g

A

f

‚ First, the type t is marked as instantiated in all its supertypes.
‚ Then, all supertypes of the declaring type are traversed

and each of their virtual invoked methods is processed.
‚ Note that type t is always used for the resolution.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 13 / 20



Handling of Virtual Methods

Algorithm 4 RTA handling of virtual methods.
1: procedure REGISTERASINSTANTIATED(t)
2: if markpt .isInstq then
3: for st P t .superTypes do
4: st .instSubtypes.addptq

5: for st P t .superTypes do
6: for m P st .virtInvoked do
7: res Ð t .resolveMethodpmq

8: registerAsInvokedpresq

C

new f

B

g

A

f

‚ First, the type t is marked as instantiated in all its supertypes.
‚ Then, all supertypes of the declaring type are traversed

and each of their virtual invoked methods is processed.
‚ Note that type t is always used for the resolution.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 13 / 20



Handling of Virtual Methods

Algorithm 5 RTA handling of virtual methods.
1: procedure REGISTERASINSTANTIATED(t)
2: if markpt .isInstq then
3: for st P t .superTypes do
4: st .instSubtypes.addptq

5: for st P t .superTypes do
6: for m P st .virtInvoked do
7: res Ð t .resolveMethodpmq

8: registerAsInvokedpresq

C

new f

B

g

A

f

‚ First, the type t is marked as instantiated in all its supertypes.
‚ Then, all supertypes of the declaring type are traversed

and each of their virtual invoked methods is processed.
‚ Note that type t is always used for the resolution.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 13 / 20



Running Example

public class Hello {
public static void main() {

new Hello().foo(new A());
log();

}
static void log(){

new B();
}
void foo(I i){

i.bar();
}

}
interface I { void bar(); }
class A implements I {...}
class B implements I {...}

Method Summaries:

‚ main
‚ New1 - Hello, A
‚ Direct invoke - log
‚ Virtual invoke - foo

‚ log
‚ New - B

‚ foo
‚ Virtual invoke - bar

1New represents instantiated types
Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 14 / 20



Running Example

public class Hello {
public static void main() {

new Hello().foo(new A());
log();

}
static void log(){

new B();
}
void foo(I i){

i.bar();
}

}
interface I { void bar(); }
class A implements I {...}
class B implements I {...}

Method Summaries:

‚ main
‚ New1 - Hello, A
‚ Direct invoke - log
‚ Virtual invoke - foo

‚ log
‚ New - B

‚ foo
‚ Virtual invoke - bar

1New represents instantiated types
Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 14 / 20



Running Example

public class Hello {
public static void main() {

new Hello().foo(new A());
log();

}
static void log(){

new B();
}
void foo(I i){

i.bar();
}

}
interface I { void bar(); }
class A implements I {...}
class B implements I {...}

Method Summaries:

‚ main
‚ New1 - Hello, A
‚ Direct invoke - log
‚ Virtual invoke - foo

‚ log
‚ New - B

‚ foo
‚ Virtual invoke - bar

1New represents instantiated types
Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 14 / 20



Running Example

public class Hello {
public static void main() {

new Hello().foo(new A());
log();

}
static void log(){

new B();
}
void foo(I i){

i.bar();
}

}
interface I { void bar(); }
class A implements I {...}
class B implements I {...}

Method Summaries:

‚ main
‚ New1 - Hello, A
‚ Direct invoke - log
‚ Virtual invoke - foo

‚ log
‚ New - B

‚ foo
‚ Virtual invoke - bar

1New represents instantiated types
Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 14 / 20



Running Example

Table: Results of the analyses on the running example.

Analysis Results
Instantiated types Invoked methods

PTA Hello, A, B log, foo, A.bar
RTA Hello, A, B log, foo, {A,B}.bar

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 15 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.

‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.

‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.

‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.

‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.

‚ Trivial embedded constants - only primitives and well-known
types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.

‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Incrementality

‚ Summaries contain mainly classes, methods, and fields.
‚ They can be represented textually.
‚ ClassId - fully qualified name.
‚ MethodId - ClassId + name + signature.
‚ FieldId - ClassId + name.

‚ Constraints:
‚ Stable identifiers - issues with generated classes.
‚ Trivial embedded constants - only primitives and well-known

types such as java.lang.String.

‚ Issues:
‚ Parsing a method in Native Image has side effects.
‚ Many summaries contain non-trivial constants.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 16 / 20



Experimental Evaluation

Table: Detailed statistics of the evaluated benchmarks.

Reachable Methods Analysis Time [s] Total time [s] Binary size [MB]
Suite Benchmark PTA RTA PTA RTA PTA RTA PTA RTA

Console helloworld 18 +17% 14 +21% 36 +17% 13 +23%

Dacapo

avrora 24 +25% 12 -8% 51 +6% 23 +30%
fop 94 +4% 46 -30% 128 -10% 105 +11%
jython 71 +8% 55 -35% 140 -26% 134 +9%
luindex 26 +23% 13 -8% 54 +7% 32 +25%

Microservices

micronaut-helloworld-wrk 74 +4% 34 -32% 88 -9% 45 +18%
mushop:order 168 +2% 102 -59% 209 -30% 104 +13%
mushop:payment 82 +4% 36 -33% 91 -10% 50 +14%
mushop:user 115 +3% 57 -44% 135 -18% 76 +13%
petclinic-wrk 207 +4% 159 -64% 297 -35% 144 +15%
quarkus-helloworld-wrk 52 +6% 18 -22% 69 -3% 50 +4%
quarkus:registry 111 +5% 49 -39% 126 -16% 69 +19%
spring-helloworld-wrk 67 +4% 30 -33% 87 -10% 47 +13%
tika-wrk 82 +6% 29 -28% 117 -6% 88 +6%

Renaissance

chi-square 173 +8% 129 -60% 260 -30% 100 +17%
dec-tree 324 +6% 2009 -95% X X X X
future-genetic 27 +22% 15 0% 44 +5% 19 +21%
gauss-mix 189 +8% 146 -61% 286 -32% 107 +17%
log-regression 334 +7% 2215 -95% X X X X
page-rank 171 +8% 129 -60% 258 -31% 119 +13%
reactors 30 +13% 19 +16% 47 +11% 19 +21%
scala-stm-bench7 30 +20% 19 +26% 49 +14% 19 +21%

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 17 / 20



Scalability In Number of Cores

Benchmarks

A
na

ly
si

s 
Ti

m
e 

[s
]

20

40

60
80

200

400

600
800

2000

Console:hello Q:Tika Q:registry Mu:order S:petclinic R:dec-tree

PTA 1
RTA 1
PTA 4
RTA 4
PTA 8
RTA 8
PTA 16
RTA 16

Figure: Scalability in number of cores.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 18 / 20



Conclusion

‚ We designed an extension of rapid type analysis for the
context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ For Spring Petclinic, we reduced the analysis time by 64%,
the overall build time by 35% at the cost of increasing the
image size by 15%.

‚ Next steps:
‚ Extend the support for incremental analysis.
‚ Combine points-to analysis with rapid type analysis.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 19 / 20



Conclusion

‚ We designed an extension of rapid type analysis for the
context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ For Spring Petclinic, we reduced the analysis time by 64%,
the overall build time by 35% at the cost of increasing the
image size by 15%.

‚ Next steps:
‚ Extend the support for incremental analysis.
‚ Combine points-to analysis with rapid type analysis.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 19 / 20



Conclusion

‚ We designed an extension of rapid type analysis for the
context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ For Spring Petclinic, we reduced the analysis time by 64%,
the overall build time by 35% at the cost of increasing the
image size by 15%.

‚ Next steps:
‚ Extend the support for incremental analysis.
‚ Combine points-to analysis with rapid type analysis.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 19 / 20



Conclusion

‚ We designed an extension of rapid type analysis for the
context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ For Spring Petclinic, we reduced the analysis time by 64%,
the overall build time by 35% at the cost of increasing the
image size by 15%.

‚ Next steps:
‚ Extend the support for incremental analysis.
‚ Combine points-to analysis with rapid type analysis.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 19 / 20



Conclusion

‚ We designed an extension of rapid type analysis for the
context of GraalVM Native Image.

‚ We extended the proposed algorithm to be parallel and
incremental.

‚ The incrementality was achieved using method summaries
that sum up the effect of each analyzed method.

‚ For Spring Petclinic, we reduced the analysis time by 64%,
the overall build time by 35% at the cost of increasing the
image size by 15%.

‚ Next steps:
‚ Extend the support for incremental analysis.
‚ Combine points-to analysis with rapid type analysis.

Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image 19 / 20



Thank You For Your Attention.


