
Software Architecture Reconstruction
for Microservice Systems

using Static Analysis
via GraalVM Native Image

Richard Hutcheson 2, Austin Blanchard 2,
Noah Lambaria 2, Jack Hale 2, David Kozak 3,

Amr S. Abdelfattah 2, Tomas Cerny 1

1University of Arizona
2Baylor University

3Brno University of Technology
ikozak@fit.vutbr.cz

d-kozak.github.io
March 13, 2024

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/


Microservices

Microservices commonly used for cloud-native systems

Advantages:
‚ flexibility
‚ scalability
‚ facilitated deployment

Disadvantages:
‚ distributed system
‚ complex
‚ error-prone

A holistic perspective is often missing.

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 2 / 14



Microservices

Microservices commonly used for cloud-native systems

Advantages:
‚ flexibility
‚ scalability
‚ facilitated deployment

Disadvantages:
‚ distributed system
‚ complex
‚ error-prone

A holistic perspective is often missing.

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 2 / 14



Microservices

Microservices commonly used for cloud-native systems

Advantages:
‚ flexibility
‚ scalability
‚ facilitated deployment

Disadvantages:
‚ distributed system
‚ complex
‚ error-prone

A holistic perspective is often missing.

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 2 / 14



Microservices

Microservices commonly used for cloud-native systems

Advantages:
‚ flexibility
‚ scalability
‚ facilitated deployment

Disadvantages:
‚ distributed system
‚ complex
‚ error-prone

A holistic perspective is often missing.

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 2 / 14



Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:
‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 3 / 14

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en


Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:
‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 3 / 14

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en


Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:
‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 3 / 14

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en


Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:
‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 3 / 14

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en


Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:

‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 3 / 14

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en


Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:
‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 3 / 14

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en


Creating SAR Views

There are multiple ways how SAR views can be generated:

‚ Manual Execution
‚ Can be tedious and error-prone

‚ Dynamic Analysis
‚ Requires a runtime environment

‚ Static Analysis
‚ Needs only the source code without execution
‚ Traditional methods not suitable for SAR
‚ Source code might not be available

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 4 / 14



Creating SAR Views

There are multiple ways how SAR views can be generated:

‚ Manual Execution
‚ Can be tedious and error-prone

‚ Dynamic Analysis
‚ Requires a runtime environment

‚ Static Analysis
‚ Needs only the source code without execution
‚ Traditional methods not suitable for SAR
‚ Source code might not be available

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 4 / 14



Creating SAR Views

There are multiple ways how SAR views can be generated:

‚ Manual Execution
‚ Can be tedious and error-prone

‚ Dynamic Analysis
‚ Requires a runtime environment

‚ Static Analysis
‚ Needs only the source code without execution
‚ Traditional methods not suitable for SAR
‚ Source code might not be available

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 4 / 14



Creating SAR Views

There are multiple ways how SAR views can be generated:

‚ Manual Execution
‚ Can be tedious and error-prone

‚ Dynamic Analysis
‚ Requires a runtime environment

‚ Static Analysis
‚ Needs only the source code without execution
‚ Traditional methods not suitable for SAR
‚ Source code might not be available

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 4 / 14



Our Proposal

Our Proposal

Perform SAR using static analysis on Java bytecode.

‚ Fully automated
‚ No room for manual error
‚ Easy integration with a Continous Integration pipeline
‚ Monitor architecture evolution over time

‚ No runtime environment necessary
‚ Applicable as soon as the code is compiled

‚ Does not need source code
‚ Can analyze libraries, third-party dependencies, and legacy

code

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 5 / 14



Our Proposal

Our Proposal

Perform SAR using static analysis on Java bytecode.

‚ Fully automated
‚ No room for manual error
‚ Easy integration with a Continous Integration pipeline
‚ Monitor architecture evolution over time

‚ No runtime environment necessary
‚ Applicable as soon as the code is compiled

‚ Does not need source code
‚ Can analyze libraries, third-party dependencies, and legacy

code

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 5 / 14



Our Proposal

Our Proposal

Perform SAR using static analysis on Java bytecode.

‚ Fully automated
‚ No room for manual error
‚ Easy integration with a Continous Integration pipeline
‚ Monitor architecture evolution over time

‚ No runtime environment necessary
‚ Applicable as soon as the code is compiled

‚ Does not need source code
‚ Can analyze libraries, third-party dependencies, and legacy

code

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 5 / 14



Our Proposal

Our Proposal

Perform SAR using static analysis on Java bytecode.

‚ Fully automated
‚ No room for manual error
‚ Easy integration with a Continous Integration pipeline
‚ Monitor architecture evolution over time

‚ No runtime environment necessary
‚ Applicable as soon as the code is compiled

‚ Does not need source code
‚ Can analyze libraries, third-party dependencies, and legacy

code

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 5 / 14



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java
‚ Fast startup time - from seconds to milliseconds
‚ Low memory footprint

‚ Highly popular in the industry
‚ Support from all major frameworks including Spring,

Micronaut, Quarkus, and Helidon

‚ Industrial-grade static analysis
‚ To detect reachable program elements
‚ We can reuse the domain classes and tools

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 6 / 14



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java
‚ Fast startup time - from seconds to milliseconds
‚ Low memory footprint

‚ Highly popular in the industry
‚ Support from all major frameworks including Spring,

Micronaut, Quarkus, and Helidon

‚ Industrial-grade static analysis
‚ To detect reachable program elements
‚ We can reuse the domain classes and tools

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 6 / 14



GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java
‚ Fast startup time - from seconds to milliseconds
‚ Low memory footprint

‚ Highly popular in the industry
‚ Support from all major frameworks including Spring,

Micronaut, Quarkus, and Helidon

‚ Industrial-grade static analysis
‚ To detect reachable program elements
‚ We can reuse the domain classes and tools

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 6 / 14



SAR using GraalVM Native Image

‚ Graal Intermediate Representation (Graal IR)
‚ Well-documented
‚ Visualization tool Ideal Graph Visualizer

‚ Inspect the IR
‚ Detect high-level patterns

‚ Open-source
‚ We can modify it easily

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 7 / 14



SAR using GraalVM Native Image

‚ Graal Intermediate Representation (Graal IR)
‚ Well-documented
‚ Visualization tool Ideal Graph Visualizer

‚ Inspect the IR
‚ Detect high-level patterns

‚ Open-source
‚ We can modify it easily

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 7 / 14



Phase 1: Extraction

First, we process each microservice using annotation scanning
and pattern matching on the IR to extract:

‚ Rest Endpoints
‚ Rest Calls
‚ Database Schema

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 8 / 14



Phase 2: Linking

Second, we combine the per-microservice domain data to
generate SAR views:

‚ Rest Calls linked with Rest Endpoints
‚ Database schemata merged based on equivalent entities

between them

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 9 / 14



Phase 3: Visualization

Third, we visualize the obtained data to present a holistic view
of the system:

‚ Service view – interaction among services
‚ Domain view – relations between database entities

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 10 / 14



Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark

‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total

‚ Evaluation performed on 2018 MacBook Pro
‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


TrainTicket: Service Dependency Graph

Compared with:
‚ Manual analysis – taken as the ground truth
‚ Walker et al. 21* using static analysis of source code

Table: Service Dependency Graph Data Analysis

Numbers/Approaches Manual Source Bytecode

REST Calls 146 146 146

Endpoints 261 261 261

Request Pairs in SDG 142 114 123

Links in SDG 90 82 82

*A. Walker, I. Laird, and T. Cerny, “On automatic software architecture reconstruction
of microservice applications,” in Information Science and Applications. Singapore: Springer
Singapore, 2021, pp. 223–234.

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 12 / 14



TrainTicket: Context Map

Compared with:
‚ Manual analysis – taken as the ground truth
‚ Walker et al. 21* using static analysis of source code

Table: TrainTicket: Context Map Data Analysis

Numbers/Approaches Manual Source Bytecode

Entity Bounded Context 117 108 116

Relation Bounded Context 43 39 43

Entity Context Map 84 76 84

Relation Context Map 24 20 24

*A. Walker, I. Laird, and T. Cerny, “On automatic software architecture reconstruction
of microservice applications,” in Information Science and Applications. Singapore: Springer
Singapore, 2021, pp. 223–234.

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 13 / 14



Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production

MS1
MS2 MSn

Native Images

..

Graal IR

Endpoints

MS<i> ..

MS<i> MS<i+1>MS<i>

MS<i+1>MS<i+2>

MS<>

Ph
as

e 
1:

 E
xt

ra
ct

io
n

Ph
as

e 
2:

 L
in

ki
ng

Ph
as

e 
3:

 V
isu

al
izi

ng

Service View Domain View

Parse High-level Constructs

Entities

REST Calls[For each]

Service dependency graph Context map
[Combine] 

‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 14 / 14

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/


Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production

MS1
MS2 MSn

Native Images

..

Graal IR

Endpoints

MS<i> ..

MS<i> MS<i+1>MS<i>

MS<i+1>MS<i+2>

MS<>

Ph
as

e 
1:

 E
xt

ra
ct

io
n

Ph
as

e 
2:

 L
in

ki
ng

Ph
as

e 
3:

 V
isu

al
izi

ng

Service View Domain View

Parse High-level Constructs

Entities

REST Calls[For each]

Service dependency graph Context map
[Combine] 

‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 14 / 14

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/


Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production

MS1
MS2 MSn

Native Images

..

Graal IR

Endpoints

MS<i> ..

MS<i> MS<i+1>MS<i>

MS<i+1>MS<i+2>

MS<>

Ph
as

e 
1:

 E
xt

ra
ct

io
n

Ph
as

e 
2:

 L
in

ki
ng

Ph
as

e 
3:

 V
isu

al
izi

ng

Service View Domain View

Parse High-level Constructs

Entities

REST Calls[For each]

Service dependency graph Context map
[Combine] 

‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 14 / 14

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/


Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production

MS1
MS2 MSn

Native Images

..

Graal IR

Endpoints

MS<i> ..

MS<i> MS<i+1>MS<i>

MS<i+1>MS<i+2>

MS<>

Ph
as

e 
1:

 E
xt

ra
ct

io
n

Ph
as

e 
2:

 L
in

ki
ng

Ph
as

e 
3:

 V
isu

al
izi

ng

Service View Domain View

Parse High-level Constructs

Entities

REST Calls[For each]

Service dependency graph Context map
[Combine] 

‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 14 / 14

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/


Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production

MS1
MS2 MSn

Native Images

..

Graal IR

Endpoints

MS<i> ..

MS<i> MS<i+1>MS<i>

MS<i+1>MS<i+2>

MS<>

Ph
as

e 
1:

 E
xt

ra
ct

io
n

Ph
as

e 
2:

 L
in

ki
ng

Ph
as

e 
3:

 V
isu

al
izi

ng

Service View Domain View

Parse High-level Constructs

Entities

REST Calls[For each]

Service dependency graph Context map
[Combine] 

‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 14 / 14

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/


Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production

MS1
MS2 MSn

Native Images

..

Graal IR

Endpoints

MS<i> ..

MS<i> MS<i+1>MS<i>

MS<i+1>MS<i+2>

MS<>

Ph
as

e 
1:

 E
xt

ra
ct

io
n

Ph
as

e 
2:

 L
in

ki
ng

Ph
as

e 
3:

 V
isu

al
izi

ng

Service View Domain View

Parse High-level Constructs

Entities

REST Calls[For each]

Service dependency graph Context map
[Combine] 

‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 14 / 14

mailto:ikozak@fit.vutbr.cz
https://d-kozak.github.io/

