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Microservices

Microservices commonly used for cloud-native systems

Advantages:
‚ flexibility
‚ scalability
‚ facilitated deployment

Disadvantages:
‚ distributed system
‚ complex
‚ error-prone

A holistic perspective is often missing.
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Software Architecture Reconstruction

‚ Software Architecture Reconstruction (SAR) for
microservices generates high-level architectural views:

‚ Views are common for describing software architecture*

‚ Service view – interaction among services
‚ Domain view – relations between database entities

‚ Provides a deeper understanding of the system:
‚ Evolution, trade-off analysis, assigning responsibilities, etc

‚ Necessary precondition for detecting microservice smells:
‚ wrong cuts
‚ shared persistency
‚ cyclic dependencies

*https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en
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Creating SAR Views

There are multiple ways how SAR views can be generated:

‚ Manual Execution
‚ Can be tedious and error-prone

‚ Dynamic Analysis
‚ Requires a runtime environment

‚ Static Analysis
‚ Needs only the source code without execution
‚ Traditional methods not suitable for SAR
‚ Source code might not be available
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Our Proposal

Our Proposal

Perform SAR using static analysis on Java bytecode.

‚ Fully automated
‚ No room for manual error
‚ Easy integration with a Continous Integration pipeline
‚ Monitor architecture evolution over time

‚ No runtime environment necessary
‚ Applicable as soon as the code is compiled

‚ Does not need source code
‚ Can analyze libraries, third-party dependencies, and legacy

code
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GraalVM Native Image

‚ Ahead-of-time (AOT) compiler for Java
‚ Fast startup time - from seconds to milliseconds
‚ Low memory footprint

‚ Highly popular in the industry
‚ Support from all major frameworks including Spring,

Micronaut, Quarkus, and Helidon

‚ Industrial-grade static analysis
‚ To detect reachable program elements
‚ We can reuse the domain classes and tools
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SAR using GraalVM Native Image

‚ Graal Intermediate Representation (Graal IR)
‚ Well-documented
‚ Visualization tool Ideal Graph Visualizer

‚ Inspect the IR
‚ Detect high-level patterns

‚ Open-source
‚ We can modify it easily
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Phase 1: Extraction

First, we process each microservice using annotation scanning
and pattern matching on the IR to extract:

‚ Rest Endpoints
‚ Rest Calls
‚ Database Schema
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Phase 2: Linking

Second, we combine the per-microservice domain data to
generate SAR views:

‚ Rest Calls linked with Rest Endpoints
‚ Database schemata merged based on equivalent entities

between them
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Phase 3: Visualization

Third, we visualize the obtained data to present a holistic view
of the system:

‚ Service view – interaction among services
‚ Domain view – relations between database entities
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Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark

‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total

‚ Evaluation performed on 2018 MacBook Pro
‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


Evaluation and Validation

We built a proof of concept - MicroGraal*:
‚ Tailored to JavaEE/Spring

We valided our approach on TrainTicket v1.0.0:

‚ Well-established community benchmark
‚ Focus only on Java microservices – 42 in total
‚ Evaluation performed on 2018 MacBook Pro

‚ Analysis Time 15s per benchmark
‚ Average Memory Consumption 850 MB

‚ The analysis can be done locally

*https://github.com/cloudhubs/graal_mvp

David Kozak – Software Architecture Reconstruction for Microservice Systems using Static Analysis via GraalVM Native Image 11 / 14

https://github.com/cloudhubs/graal_mvp


TrainTicket: Service Dependency Graph

Compared with:
‚ Manual analysis – taken as the ground truth
‚ Walker et al. 21* using static analysis of source code

Table: Service Dependency Graph Data Analysis

Numbers/Approaches Manual Source Bytecode

REST Calls 146 146 146

Endpoints 261 261 261

Request Pairs in SDG 142 114 123

Links in SDG 90 82 82

*A. Walker, I. Laird, and T. Cerny, “On automatic software architecture reconstruction
of microservice applications,” in Information Science and Applications. Singapore: Springer
Singapore, 2021, pp. 223–234.
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TrainTicket: Context Map

Compared with:
‚ Manual analysis – taken as the ground truth
‚ Walker et al. 21* using static analysis of source code

Table: TrainTicket: Context Map Data Analysis

Numbers/Approaches Manual Source Bytecode

Entity Bounded Context 117 108 116

Relation Bounded Context 43 39 43

Entity Context Map 84 76 84

Relation Context Map 24 20 24

*A. Walker, I. Laird, and T. Cerny, “On automatic software architecture reconstruction
of microservice applications,” in Information Science and Applications. Singapore: Springer
Singapore, 2021, pp. 223–234.
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Conclusion
‚ We can analyze compiled Java microservices

‚ We can extract documentation, dependencies without
running the system

‚ We can help architects access what is in the system before
it goes to production
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‚ Three-step Methodology

‚ Future work:

‚ Polyglot systems

‚ Advanced static analyses
(taint, data flow)

‚ Contact:

‚ ikozak@fit.vutbr.cz

‚ d-kozak.github.io
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